Cargando…

Combined Preimplantation Genetic Testing for Autosomal Dominant Polycystic Kidney Disease: Consequences for Embryos Available for Transfer

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and presents with genetic and clinical heterogeneity. ADPKD can also manifest extra-renally, and seminal cysts have been associated with male infertility in some cases. ADPKD-linked male infertility, al...

Descripción completa

Detalles Bibliográficos
Autores principales: Mir Pardo, Pere, Martínez-Conejero, José Antonio, Martín, Julio, Simón, Carlos, Cervero, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349812/
https://www.ncbi.nlm.nih.gov/pubmed/32599795
http://dx.doi.org/10.3390/genes11060692
Descripción
Sumario:Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and presents with genetic and clinical heterogeneity. ADPKD can also manifest extra-renally, and seminal cysts have been associated with male infertility in some cases. ADPKD-linked male infertility, along with female age, have been proposed as factors that may influence the clinical outcomes of preimplantation genetic testing (PGT) for monogenic disorders (PGT-M). Large PGT for aneuploidy assessment (PGT-A) studies link embryo aneuploidy to increasing female age; other studies suggest that embryo aneuploidy is also linked to severe male-factor infertility. We aimed to assess the number of aneuploid embryos and the number of cycles with transferable embryos in ADPKD patients after combined-PGT. The combined-PGT protocol, involving PGT-M by PCR and PGT-A by next-generation sequencing, was performed in single trophectoderm biopsies from 289 embryos in 83 PGT cycles. Transferable embryos were obtained in 69.9% of cycles. The number of aneuploid embryos and cycles with transferable embryos did not differ when the male or female had the ADPKD mutation. However, a significantly higher proportion of aneuploid embryos was found in the advanced maternal age (AMA) group, but not in the male factor (MF) group, when compared to non-AMA and non-MF groups, respectively. Additionally, no significant differences in the percentage of cycles with transferable embryos were found in any of the groups. Our results indicate that AMA couples among ADPKD patients have an increased risk of aneuploid embryos, but ADPKD-linked male infertility does not promote an increased aneuploidy rate.