Cargando…
Real-Time Prediction of Rate of Penetration in S-Shape Well Profile Using Artificial Intelligence Models
Rate of penetration (ROP) is defined as the amount of removed rock per unit area per unit time. It is affected by several factors which are inseparable. Current established models for determining the ROP include the basic mathematical and physics equations, as well as the use of empirical correlatio...
Autor principal: | Elkatatny, Salaheldin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349819/ https://www.ncbi.nlm.nih.gov/pubmed/32575868 http://dx.doi.org/10.3390/s20123506 |
Ejemplares similares
-
A New Model for Predicting Rate of Penetration Using an Artificial Neural Network
por: Elkatatny, Salaheldin, et al.
Publicado: (2020) -
Real-Time Prediction of Equivalent Circulation Density
for Horizontal Wells Using Intelligent Machines
por: Alsaihati, Ahmed, et al.
Publicado: (2020) -
Real-time rate of penetration prediction for motorized bottom hole assembly using machine learning methods
por: Shokry, Amir, et al.
Publicado: (2023) -
Applications of Artificial Intelligence
to Predict Oil Rate for High Gas–Oil Ratio and Water-Cut Wells
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2021) -
Intelligent Prediction for Rock Porosity While Drilling Complex Lithology in Real Time
por: Gamal, Hany, et al.
Publicado: (2021)