Cargando…
A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine
Sensor fault detection of wind turbines plays an important role in improving the reliability and stable operation of turbines. The supervisory control and data acquisition (SCADA) system of a wind turbine provides promising insights into sensor fault detection due to the accessibility of the data an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349861/ https://www.ncbi.nlm.nih.gov/pubmed/32599907 http://dx.doi.org/10.3390/s20123580 |
_version_ | 1783557152785301504 |
---|---|
author | Wang, Hong Wang, Hongbin Jiang, Guoqian Wang, Yueling Ren, Shuang |
author_facet | Wang, Hong Wang, Hongbin Jiang, Guoqian Wang, Yueling Ren, Shuang |
author_sort | Wang, Hong |
collection | PubMed |
description | Sensor fault detection of wind turbines plays an important role in improving the reliability and stable operation of turbines. The supervisory control and data acquisition (SCADA) system of a wind turbine provides promising insights into sensor fault detection due to the accessibility of the data and the abundance of sensor information. However, SCADA data are essentially multivariate time series with inherent spatio-temporal correlation characteristics, which has not been well considered in the existing wind turbine fault detection research. This paper proposes a novel classification-based fault detection method for wind turbine sensors. To better capture the spatio-temporal characteristics hidden in SCADA data, a multiscale spatio-temporal convolutional deep belief network (MSTCDBN) was developed to perform feature learning and classification to fulfill the sensor fault detection. A major superiority of the proposed method is that it can not only learn the spatial correlation information between several different variables but also capture the temporal characteristics of each variable. Furthermore, this method with multiscale learning capability can excavate interactive characteristics between variables at different scales of filters. A generic wind turbine benchmark model was used to evaluate the proposed approach. The comparative results demonstrate that the proposed method can significantly enhance the fault detection performance. |
format | Online Article Text |
id | pubmed-7349861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73498612020-07-15 A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine Wang, Hong Wang, Hongbin Jiang, Guoqian Wang, Yueling Ren, Shuang Sensors (Basel) Article Sensor fault detection of wind turbines plays an important role in improving the reliability and stable operation of turbines. The supervisory control and data acquisition (SCADA) system of a wind turbine provides promising insights into sensor fault detection due to the accessibility of the data and the abundance of sensor information. However, SCADA data are essentially multivariate time series with inherent spatio-temporal correlation characteristics, which has not been well considered in the existing wind turbine fault detection research. This paper proposes a novel classification-based fault detection method for wind turbine sensors. To better capture the spatio-temporal characteristics hidden in SCADA data, a multiscale spatio-temporal convolutional deep belief network (MSTCDBN) was developed to perform feature learning and classification to fulfill the sensor fault detection. A major superiority of the proposed method is that it can not only learn the spatial correlation information between several different variables but also capture the temporal characteristics of each variable. Furthermore, this method with multiscale learning capability can excavate interactive characteristics between variables at different scales of filters. A generic wind turbine benchmark model was used to evaluate the proposed approach. The comparative results demonstrate that the proposed method can significantly enhance the fault detection performance. MDPI 2020-06-24 /pmc/articles/PMC7349861/ /pubmed/32599907 http://dx.doi.org/10.3390/s20123580 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Hong Wang, Hongbin Jiang, Guoqian Wang, Yueling Ren, Shuang A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine |
title | A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine |
title_full | A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine |
title_fullStr | A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine |
title_full_unstemmed | A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine |
title_short | A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine |
title_sort | multiscale spatio-temporal convolutional deep belief network for sensor fault detection of wind turbine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349861/ https://www.ncbi.nlm.nih.gov/pubmed/32599907 http://dx.doi.org/10.3390/s20123580 |
work_keys_str_mv | AT wanghong amultiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT wanghongbin amultiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT jiangguoqian amultiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT wangyueling amultiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT renshuang amultiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT wanghong multiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT wanghongbin multiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT jiangguoqian multiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT wangyueling multiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine AT renshuang multiscalespatiotemporalconvolutionaldeepbeliefnetworkforsensorfaultdetectionofwindturbine |