Cargando…
Automated Quality Assurance of OAR Contouring for Lung Cancer Based on Segmentation With Deep Active Learning
Purpose: Ensuring high-quality data for clinical trials in radiotherapy requires the generation of contours that comply with protocol definitions. The current workflow includes a manual review of the submitted contours, which is time-consuming and subjective. In this study, we developed an automated...
Autores principales: | Men, Kuo, Geng, Huaizhi, Biswas, Tithi, Liao, Zhongxing, Xiao, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350536/ https://www.ncbi.nlm.nih.gov/pubmed/32719742 http://dx.doi.org/10.3389/fonc.2020.00986 |
Ejemplares similares
-
CNN-Based Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2020) -
Quality assurance for automatically generated contours with additional deep learning
por: Isaksson, Lars Johannes, et al.
Publicado: (2022) -
Deep Learning for Per-Fraction Automatic Segmentation of Gross Tumor Volume (GTV) and Organs at Risk (OARs) in Adaptive Radiotherapy of Cervical Cancer
por: Breto, Adrian L., et al.
Publicado: (2022) -
Deep Learning for Automated Contouring of Gross Tumor Volumes in Esophageal Cancer
por: Jin, Linzhi, et al.
Publicado: (2022) -
Leveraging deep learning-based segmentation and contours-driven deformable registration for dose accumulation in abdominal structures
por: McCulloch, Molly M., et al.
Publicado: (2022)