Cargando…
Leveraging Bayesian networks and information theory to learn risk factors for breast cancer metastasis
BACKGROUND: Even though we have established a few risk factors for metastatic breast cancer (MBC) through epidemiologic studies, these risk factors have not proven to be effective in predicting an individual’s risk of developing metastasis. Therefore, identifying critical risk factors for MBC contin...
Autores principales: | Jiang, Xia, Wells, Alan, Brufsky, Adam, Shetty, Darshan, Shajihan, Kahmil, Neapolitan, Richard E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350636/ https://www.ncbi.nlm.nih.gov/pubmed/32650714 http://dx.doi.org/10.1186/s12859-020-03638-8 |
Ejemplares similares
-
A clinical decision support system learned from data to personalize treatment recommendations towards preventing breast cancer metastasis
por: Jiang, Xia, et al.
Publicado: (2019) -
Discovering causal interactions using Bayesian network scoring and information gain
por: Zeng, Zexian, et al.
Publicado: (2016) -
Learning genetic epistasis using Bayesian network scoring criteria
por: Jiang, Xia, et al.
Publicado: (2011) -
A New Method for Predicting Patient Survivorship Using Efficient Bayesian Network Learning
por: Jiang, Xia, et al.
Publicado: (2014) -
Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring
por: Jiang, Xia, et al.
Publicado: (2015)