Cargando…

Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis

Tick-borne diseases (TBDs) continue to emerge and re-emerge in several regions of the world, highlighting the need for novel and effective control strategies. The development of effective strategies requires a better understanding of TBDs ecology, and given the complexity of these systems, interdisc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lado, Paula, Luan, Bo, Allerdice, Michelle E.J., Paddock, Christopher D., Karpathy, Sandor E., Klompen, Hans
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350919/
https://www.ncbi.nlm.nih.gov/pubmed/32704442
http://dx.doi.org/10.7717/peerj.9367
_version_ 1783557361528471552
author Lado, Paula
Luan, Bo
Allerdice, Michelle E.J.
Paddock, Christopher D.
Karpathy, Sandor E.
Klompen, Hans
author_facet Lado, Paula
Luan, Bo
Allerdice, Michelle E.J.
Paddock, Christopher D.
Karpathy, Sandor E.
Klompen, Hans
author_sort Lado, Paula
collection PubMed
description Tick-borne diseases (TBDs) continue to emerge and re-emerge in several regions of the world, highlighting the need for novel and effective control strategies. The development of effective strategies requires a better understanding of TBDs ecology, and given the complexity of these systems, interdisciplinary approaches are required. In recent years, the microbiome of vectors has received much attention, mainly because associations between native microbes and pathogens may provide a new promising path towards the disruption of pathogen transmission. However, we still do not fully understand how host genetics and environmental factors interact to shape the microbiome of organisms, or how pathogenic microorganisms affect the microbiome and vice versa. The integration of different lines of evidence may be the key to improve our understanding of TBDs ecology. In that context, we generated microbiome and pathogen presence data for Dermacentor variabilis, and integrated those data sets with population genetic data, and metadata for the same individual tick specimens. Clustering and multivariate statistical methods were used to combine, analyze, and visualize data sets. Interpretation of the results is challenging, likely due to the low levels of genetic diversity and the high abundance of a few taxa in the microbiome. Francisella was dominant in almost all ticks, regardless of geography or sex. Nevertheless, our results showed that, overall, ticks from different geographic regions differ in their microbiome composition. Additionally, DNA of Rickettsia rhipicephali, R. montanensis, R. bellii, and Anaplasma spp., was detected in D. variabilis specimens. This is the first study that successfully generated microbiome, population genetics, and pathogen presence data from the same individual ticks, and that attempted to combine the different lines of evidence. The approaches and pre-processing steps used can be applied to a variety of taxa, and help better understand ecological processes in biological systems.
format Online
Article
Text
id pubmed-7350919
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-73509192020-07-22 Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis Lado, Paula Luan, Bo Allerdice, Michelle E.J. Paddock, Christopher D. Karpathy, Sandor E. Klompen, Hans PeerJ Ecology Tick-borne diseases (TBDs) continue to emerge and re-emerge in several regions of the world, highlighting the need for novel and effective control strategies. The development of effective strategies requires a better understanding of TBDs ecology, and given the complexity of these systems, interdisciplinary approaches are required. In recent years, the microbiome of vectors has received much attention, mainly because associations between native microbes and pathogens may provide a new promising path towards the disruption of pathogen transmission. However, we still do not fully understand how host genetics and environmental factors interact to shape the microbiome of organisms, or how pathogenic microorganisms affect the microbiome and vice versa. The integration of different lines of evidence may be the key to improve our understanding of TBDs ecology. In that context, we generated microbiome and pathogen presence data for Dermacentor variabilis, and integrated those data sets with population genetic data, and metadata for the same individual tick specimens. Clustering and multivariate statistical methods were used to combine, analyze, and visualize data sets. Interpretation of the results is challenging, likely due to the low levels of genetic diversity and the high abundance of a few taxa in the microbiome. Francisella was dominant in almost all ticks, regardless of geography or sex. Nevertheless, our results showed that, overall, ticks from different geographic regions differ in their microbiome composition. Additionally, DNA of Rickettsia rhipicephali, R. montanensis, R. bellii, and Anaplasma spp., was detected in D. variabilis specimens. This is the first study that successfully generated microbiome, population genetics, and pathogen presence data from the same individual ticks, and that attempted to combine the different lines of evidence. The approaches and pre-processing steps used can be applied to a variety of taxa, and help better understand ecological processes in biological systems. PeerJ Inc. 2020-07-07 /pmc/articles/PMC7350919/ /pubmed/32704442 http://dx.doi.org/10.7717/peerj.9367 Text en ©2020 Lado et al. https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication (https://creativecommons.org/publicdomain/zero/1.0/) . This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Ecology
Lado, Paula
Luan, Bo
Allerdice, Michelle E.J.
Paddock, Christopher D.
Karpathy, Sandor E.
Klompen, Hans
Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis
title Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis
title_full Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis
title_fullStr Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis
title_full_unstemmed Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis
title_short Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis
title_sort integrating population genetic structure, microbiome, and pathogens presence data in dermacentor variabilis
topic Ecology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350919/
https://www.ncbi.nlm.nih.gov/pubmed/32704442
http://dx.doi.org/10.7717/peerj.9367
work_keys_str_mv AT ladopaula integratingpopulationgeneticstructuremicrobiomeandpathogenspresencedataindermacentorvariabilis
AT luanbo integratingpopulationgeneticstructuremicrobiomeandpathogenspresencedataindermacentorvariabilis
AT allerdicemichelleej integratingpopulationgeneticstructuremicrobiomeandpathogenspresencedataindermacentorvariabilis
AT paddockchristopherd integratingpopulationgeneticstructuremicrobiomeandpathogenspresencedataindermacentorvariabilis
AT karpathysandore integratingpopulationgeneticstructuremicrobiomeandpathogenspresencedataindermacentorvariabilis
AT klompenhans integratingpopulationgeneticstructuremicrobiomeandpathogenspresencedataindermacentorvariabilis