Cargando…
Imputing missing RNA-sequencing data from DNA methylation by using a transfer learning–based neural network
BACKGROUND: Gene expression plays a key intermediate role in linking molecular features at the DNA level and phenotype. However, owing to various limitations in experiments, the RNA-seq data are missing in many samples while there exist high-quality of DNA methylation data. Because DNA methylation i...
Autores principales: | Zhou, Xiang, Chai, Hua, Zhao, Huiying, Luo, Ching-Hsing, Yang, Yuedong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350980/ https://www.ncbi.nlm.nih.gov/pubmed/32649756 http://dx.doi.org/10.1093/gigascience/giaa076 |
Ejemplares similares
-
Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks
por: Rao, Jiahua, et al.
Publicado: (2021) -
Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data
por: Wu, Chong, et al.
Publicado: (2016) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
An Adaptive Transfer-Learning-Based Deep Cox Neural Network for Hepatocellular Carcinoma Prognosis Prediction
por: Chai, Hua, et al.
Publicado: (2021) -
Disease classification for whole-blood DNA methylation: Meta-analysis, missing values imputation, and XAI
por: Kalyakulina, Alena, et al.
Publicado: (2022)