Cargando…

A multiresolution mixture generative adversarial network for video super-resolution

Generative adversarial networks (GANs) have been used to obtain super-resolution (SR) videos that have improved visual perception quality and more coherent details. However, the latest methods perform poorly in areas with dense textures. To better recover the areas with dense textures in video frame...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Zhiqiang, Wang, Yudiao, Du, Shaoyi, Lan, Xuguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351143/
https://www.ncbi.nlm.nih.gov/pubmed/32649694
http://dx.doi.org/10.1371/journal.pone.0235352
Descripción
Sumario:Generative adversarial networks (GANs) have been used to obtain super-resolution (SR) videos that have improved visual perception quality and more coherent details. However, the latest methods perform poorly in areas with dense textures. To better recover the areas with dense textures in video frames and improve the visual perception quality and coherence in videos, this paper proposes a multiresolution mixture generative adversarial network for video super-resolution (MRMVSR). We propose a multiresolution mixture network (MRMNet) as the generative network that can simultaneously generate multiresolution feature maps. In MRMNet, the high-resolution (HR) feature maps can continuously extract information from low-resolution (LR) feature maps to supplement information. In addition, we propose a residual fluctuation loss function for video super-resolution. The residual fluctuation loss function is used to reduce the overall residual fluctuation on SR and HR video frames to avoid a scenario where local differences are too large. Experimental results on the public benchmark dataset show that our method outperforms the state-of-the-art methods for the majority of the test sets.