Cargando…

Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans

Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proba...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Min, Solmonson, Ashley, Pan, Chunxiao, Yang, Chendong, Li, Dan, Notzon, Ashley, Cai, Ling, Guevara, Gerardo, Zacharias, Lauren G., Faubert, Brandon, Vu, Hieu S., Jiang, Lei, Ko, Bookyung, Morales, Noriko Merida, Pei, Jimin, Vale, Gonçalo, Rakheja, Dinesh, Grishin, Nick V., McDonald, Jeffrey G., Gotway, Garrett K., McNutt, Markey C., Pascual, Juan M., DeBerardinis, Ralph J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351313/
https://www.ncbi.nlm.nih.gov/pubmed/31042466
http://dx.doi.org/10.1016/j.celrep.2019.04.005
_version_ 1783557425600659456
author Ni, Min
Solmonson, Ashley
Pan, Chunxiao
Yang, Chendong
Li, Dan
Notzon, Ashley
Cai, Ling
Guevara, Gerardo
Zacharias, Lauren G.
Faubert, Brandon
Vu, Hieu S.
Jiang, Lei
Ko, Bookyung
Morales, Noriko Merida
Pei, Jimin
Vale, Gonçalo
Rakheja, Dinesh
Grishin, Nick V.
McDonald, Jeffrey G.
Gotway, Garrett K.
McNutt, Markey C.
Pascual, Juan M.
DeBerardinis, Ralph J.
author_facet Ni, Min
Solmonson, Ashley
Pan, Chunxiao
Yang, Chendong
Li, Dan
Notzon, Ashley
Cai, Ling
Guevara, Gerardo
Zacharias, Lauren G.
Faubert, Brandon
Vu, Hieu S.
Jiang, Lei
Ko, Bookyung
Morales, Noriko Merida
Pei, Jimin
Vale, Gonçalo
Rakheja, Dinesh
Grishin, Nick V.
McDonald, Jeffrey G.
Gotway, Garrett K.
McNutt, Markey C.
Pascual, Juan M.
DeBerardinis, Ralph J.
author_sort Ni, Min
collection PubMed
description Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proband is a compound heterozygote for variants in LIPT1, which encodes the lipoyltransferase required for 2-ketoacid dehydrogenase (2KDH) function. Metabolomics reveals abnormalities in lipids, amino acids, and 2-hydroxyglutarate consistent with loss of multiple 2KDHs. Homozygous knock-in of a LIPT1 mutation reduces 2KDH lipoylation in utero and results in embryonic demise. In patient fibroblasts, defective 2KDH lipoylation and function are corrected by wild-type, but not mutant, LIPT1 alleles. Isotope tracing reveals that LIPT1 supports lipogenesis and balances oxidative and reductive glutamine metabolism. Altogether, the data extend the role of LIPT1 in metabolic regulation and demonstrate how integrating genomics and metabolomics can uncover broader aspects of IEM pathophysiology.
format Online
Article
Text
id pubmed-7351313
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-73513132020-07-10 Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans Ni, Min Solmonson, Ashley Pan, Chunxiao Yang, Chendong Li, Dan Notzon, Ashley Cai, Ling Guevara, Gerardo Zacharias, Lauren G. Faubert, Brandon Vu, Hieu S. Jiang, Lei Ko, Bookyung Morales, Noriko Merida Pei, Jimin Vale, Gonçalo Rakheja, Dinesh Grishin, Nick V. McDonald, Jeffrey G. Gotway, Garrett K. McNutt, Markey C. Pascual, Juan M. DeBerardinis, Ralph J. Cell Rep Article Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proband is a compound heterozygote for variants in LIPT1, which encodes the lipoyltransferase required for 2-ketoacid dehydrogenase (2KDH) function. Metabolomics reveals abnormalities in lipids, amino acids, and 2-hydroxyglutarate consistent with loss of multiple 2KDHs. Homozygous knock-in of a LIPT1 mutation reduces 2KDH lipoylation in utero and results in embryonic demise. In patient fibroblasts, defective 2KDH lipoylation and function are corrected by wild-type, but not mutant, LIPT1 alleles. Isotope tracing reveals that LIPT1 supports lipogenesis and balances oxidative and reductive glutamine metabolism. Altogether, the data extend the role of LIPT1 in metabolic regulation and demonstrate how integrating genomics and metabolomics can uncover broader aspects of IEM pathophysiology. 2019-04-30 /pmc/articles/PMC7351313/ /pubmed/31042466 http://dx.doi.org/10.1016/j.celrep.2019.04.005 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Ni, Min
Solmonson, Ashley
Pan, Chunxiao
Yang, Chendong
Li, Dan
Notzon, Ashley
Cai, Ling
Guevara, Gerardo
Zacharias, Lauren G.
Faubert, Brandon
Vu, Hieu S.
Jiang, Lei
Ko, Bookyung
Morales, Noriko Merida
Pei, Jimin
Vale, Gonçalo
Rakheja, Dinesh
Grishin, Nick V.
McDonald, Jeffrey G.
Gotway, Garrett K.
McNutt, Markey C.
Pascual, Juan M.
DeBerardinis, Ralph J.
Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans
title Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans
title_full Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans
title_fullStr Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans
title_full_unstemmed Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans
title_short Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans
title_sort functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351313/
https://www.ncbi.nlm.nih.gov/pubmed/31042466
http://dx.doi.org/10.1016/j.celrep.2019.04.005
work_keys_str_mv AT nimin functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT solmonsonashley functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT panchunxiao functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT yangchendong functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT lidan functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT notzonashley functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT cailing functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT guevaragerardo functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT zachariaslaureng functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT faubertbrandon functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT vuhieus functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT jianglei functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT kobookyung functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT moralesnorikomerida functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT peijimin functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT valegoncalo functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT rakhejadinesh functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT grishinnickv functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT mcdonaldjeffreyg functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT gotwaygarrettk functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT mcnuttmarkeyc functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT pascualjuanm functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans
AT deberardinisralphj functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans