Cargando…
Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans
Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proba...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351313/ https://www.ncbi.nlm.nih.gov/pubmed/31042466 http://dx.doi.org/10.1016/j.celrep.2019.04.005 |
_version_ | 1783557425600659456 |
---|---|
author | Ni, Min Solmonson, Ashley Pan, Chunxiao Yang, Chendong Li, Dan Notzon, Ashley Cai, Ling Guevara, Gerardo Zacharias, Lauren G. Faubert, Brandon Vu, Hieu S. Jiang, Lei Ko, Bookyung Morales, Noriko Merida Pei, Jimin Vale, Gonçalo Rakheja, Dinesh Grishin, Nick V. McDonald, Jeffrey G. Gotway, Garrett K. McNutt, Markey C. Pascual, Juan M. DeBerardinis, Ralph J. |
author_facet | Ni, Min Solmonson, Ashley Pan, Chunxiao Yang, Chendong Li, Dan Notzon, Ashley Cai, Ling Guevara, Gerardo Zacharias, Lauren G. Faubert, Brandon Vu, Hieu S. Jiang, Lei Ko, Bookyung Morales, Noriko Merida Pei, Jimin Vale, Gonçalo Rakheja, Dinesh Grishin, Nick V. McDonald, Jeffrey G. Gotway, Garrett K. McNutt, Markey C. Pascual, Juan M. DeBerardinis, Ralph J. |
author_sort | Ni, Min |
collection | PubMed |
description | Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proband is a compound heterozygote for variants in LIPT1, which encodes the lipoyltransferase required for 2-ketoacid dehydrogenase (2KDH) function. Metabolomics reveals abnormalities in lipids, amino acids, and 2-hydroxyglutarate consistent with loss of multiple 2KDHs. Homozygous knock-in of a LIPT1 mutation reduces 2KDH lipoylation in utero and results in embryonic demise. In patient fibroblasts, defective 2KDH lipoylation and function are corrected by wild-type, but not mutant, LIPT1 alleles. Isotope tracing reveals that LIPT1 supports lipogenesis and balances oxidative and reductive glutamine metabolism. Altogether, the data extend the role of LIPT1 in metabolic regulation and demonstrate how integrating genomics and metabolomics can uncover broader aspects of IEM pathophysiology. |
format | Online Article Text |
id | pubmed-7351313 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-73513132020-07-10 Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans Ni, Min Solmonson, Ashley Pan, Chunxiao Yang, Chendong Li, Dan Notzon, Ashley Cai, Ling Guevara, Gerardo Zacharias, Lauren G. Faubert, Brandon Vu, Hieu S. Jiang, Lei Ko, Bookyung Morales, Noriko Merida Pei, Jimin Vale, Gonçalo Rakheja, Dinesh Grishin, Nick V. McDonald, Jeffrey G. Gotway, Garrett K. McNutt, Markey C. Pascual, Juan M. DeBerardinis, Ralph J. Cell Rep Article Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proband is a compound heterozygote for variants in LIPT1, which encodes the lipoyltransferase required for 2-ketoacid dehydrogenase (2KDH) function. Metabolomics reveals abnormalities in lipids, amino acids, and 2-hydroxyglutarate consistent with loss of multiple 2KDHs. Homozygous knock-in of a LIPT1 mutation reduces 2KDH lipoylation in utero and results in embryonic demise. In patient fibroblasts, defective 2KDH lipoylation and function are corrected by wild-type, but not mutant, LIPT1 alleles. Isotope tracing reveals that LIPT1 supports lipogenesis and balances oxidative and reductive glutamine metabolism. Altogether, the data extend the role of LIPT1 in metabolic regulation and demonstrate how integrating genomics and metabolomics can uncover broader aspects of IEM pathophysiology. 2019-04-30 /pmc/articles/PMC7351313/ /pubmed/31042466 http://dx.doi.org/10.1016/j.celrep.2019.04.005 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Ni, Min Solmonson, Ashley Pan, Chunxiao Yang, Chendong Li, Dan Notzon, Ashley Cai, Ling Guevara, Gerardo Zacharias, Lauren G. Faubert, Brandon Vu, Hieu S. Jiang, Lei Ko, Bookyung Morales, Noriko Merida Pei, Jimin Vale, Gonçalo Rakheja, Dinesh Grishin, Nick V. McDonald, Jeffrey G. Gotway, Garrett K. McNutt, Markey C. Pascual, Juan M. DeBerardinis, Ralph J. Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans |
title | Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans |
title_full | Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans |
title_fullStr | Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans |
title_full_unstemmed | Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans |
title_short | Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans |
title_sort | functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351313/ https://www.ncbi.nlm.nih.gov/pubmed/31042466 http://dx.doi.org/10.1016/j.celrep.2019.04.005 |
work_keys_str_mv | AT nimin functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT solmonsonashley functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT panchunxiao functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT yangchendong functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT lidan functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT notzonashley functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT cailing functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT guevaragerardo functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT zachariaslaureng functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT faubertbrandon functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT vuhieus functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT jianglei functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT kobookyung functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT moralesnorikomerida functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT peijimin functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT valegoncalo functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT rakhejadinesh functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT grishinnickv functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT mcdonaldjeffreyg functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT gotwaygarrettk functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT mcnuttmarkeyc functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT pascualjuanm functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans AT deberardinisralphj functionalassessmentoflipoyltransferase1deficiencyincellsmiceandhumans |