Cargando…

A trans-eQTL network regulates osteoclast multinucleation and bone mass

Functional characterisation of cell-type-specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Pereira, Marie, Ko, Jeong-Hun, Logan, John, Protheroe, Hayley, Kim, Kee-Beom, Tan, Amelia Li Min, Croucher, Peter I, Park, Kwon-Sik, Rotival, Maxime, Petretto, Enrico, Bassett, JH Duncan, Williams, Graham R, Behmoaras, Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351491/
https://www.ncbi.nlm.nih.gov/pubmed/32553114
http://dx.doi.org/10.7554/eLife.55549
_version_ 1783557450684694528
author Pereira, Marie
Ko, Jeong-Hun
Logan, John
Protheroe, Hayley
Kim, Kee-Beom
Tan, Amelia Li Min
Croucher, Peter I
Park, Kwon-Sik
Rotival, Maxime
Petretto, Enrico
Bassett, JH Duncan
Williams, Graham R
Behmoaras, Jacques
author_facet Pereira, Marie
Ko, Jeong-Hun
Logan, John
Protheroe, Hayley
Kim, Kee-Beom
Tan, Amelia Li Min
Croucher, Peter I
Park, Kwon-Sik
Rotival, Maxime
Petretto, Enrico
Bassett, JH Duncan
Williams, Graham R
Behmoaras, Jacques
author_sort Pereira, Marie
collection PubMed
description Functional characterisation of cell-type-specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption activities determine quantifiable skeletal traits. Here we took advantage of a trans-regulated gene network (MMnet, macrophage multinucleation network) which we found to be significantly enriched for GWAS variants associated with bone-related phenotypes. We found that the network hub gene Bcat1 and seven other co-regulated MMnet genes out of 13, regulate bone function. Specifically, global (Pik3cb(-/-), Atp8b2(+/-), Igsf8(-/-), Eml1(-/-), Appl2(-/-), Deptor(-/-)) and myeloid-specific Slc40a1 knockout mice displayed abnormal bone phenotypes. We report opposing effects of MMnet genes on bone mass in mice and osteoclast multinucleation/resorption in humans with strong correlation between the two. These results identify MMnet as a functionally conserved network that regulates osteoclast multinucleation and bone mass.
format Online
Article
Text
id pubmed-7351491
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-73514912020-07-13 A trans-eQTL network regulates osteoclast multinucleation and bone mass Pereira, Marie Ko, Jeong-Hun Logan, John Protheroe, Hayley Kim, Kee-Beom Tan, Amelia Li Min Croucher, Peter I Park, Kwon-Sik Rotival, Maxime Petretto, Enrico Bassett, JH Duncan Williams, Graham R Behmoaras, Jacques eLife Cell Biology Functional characterisation of cell-type-specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption activities determine quantifiable skeletal traits. Here we took advantage of a trans-regulated gene network (MMnet, macrophage multinucleation network) which we found to be significantly enriched for GWAS variants associated with bone-related phenotypes. We found that the network hub gene Bcat1 and seven other co-regulated MMnet genes out of 13, regulate bone function. Specifically, global (Pik3cb(-/-), Atp8b2(+/-), Igsf8(-/-), Eml1(-/-), Appl2(-/-), Deptor(-/-)) and myeloid-specific Slc40a1 knockout mice displayed abnormal bone phenotypes. We report opposing effects of MMnet genes on bone mass in mice and osteoclast multinucleation/resorption in humans with strong correlation between the two. These results identify MMnet as a functionally conserved network that regulates osteoclast multinucleation and bone mass. eLife Sciences Publications, Ltd 2020-06-19 /pmc/articles/PMC7351491/ /pubmed/32553114 http://dx.doi.org/10.7554/eLife.55549 Text en © 2020, Pereira et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Pereira, Marie
Ko, Jeong-Hun
Logan, John
Protheroe, Hayley
Kim, Kee-Beom
Tan, Amelia Li Min
Croucher, Peter I
Park, Kwon-Sik
Rotival, Maxime
Petretto, Enrico
Bassett, JH Duncan
Williams, Graham R
Behmoaras, Jacques
A trans-eQTL network regulates osteoclast multinucleation and bone mass
title A trans-eQTL network regulates osteoclast multinucleation and bone mass
title_full A trans-eQTL network regulates osteoclast multinucleation and bone mass
title_fullStr A trans-eQTL network regulates osteoclast multinucleation and bone mass
title_full_unstemmed A trans-eQTL network regulates osteoclast multinucleation and bone mass
title_short A trans-eQTL network regulates osteoclast multinucleation and bone mass
title_sort trans-eqtl network regulates osteoclast multinucleation and bone mass
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351491/
https://www.ncbi.nlm.nih.gov/pubmed/32553114
http://dx.doi.org/10.7554/eLife.55549
work_keys_str_mv AT pereiramarie atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT kojeonghun atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT loganjohn atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT protheroehayley atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT kimkeebeom atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT tanamelialimin atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT croucherpeteri atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT parkkwonsik atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT rotivalmaxime atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT petrettoenrico atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT bassettjhduncan atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT williamsgrahamr atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT behmoarasjacques atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT pereiramarie transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT kojeonghun transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT loganjohn transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT protheroehayley transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT kimkeebeom transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT tanamelialimin transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT croucherpeteri transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT parkkwonsik transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT rotivalmaxime transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT petrettoenrico transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT bassettjhduncan transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT williamsgrahamr transeqtlnetworkregulatesosteoclastmultinucleationandbonemass
AT behmoarasjacques transeqtlnetworkregulatesosteoclastmultinucleationandbonemass