Cargando…
A trans-eQTL network regulates osteoclast multinucleation and bone mass
Functional characterisation of cell-type-specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption ac...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351491/ https://www.ncbi.nlm.nih.gov/pubmed/32553114 http://dx.doi.org/10.7554/eLife.55549 |
_version_ | 1783557450684694528 |
---|---|
author | Pereira, Marie Ko, Jeong-Hun Logan, John Protheroe, Hayley Kim, Kee-Beom Tan, Amelia Li Min Croucher, Peter I Park, Kwon-Sik Rotival, Maxime Petretto, Enrico Bassett, JH Duncan Williams, Graham R Behmoaras, Jacques |
author_facet | Pereira, Marie Ko, Jeong-Hun Logan, John Protheroe, Hayley Kim, Kee-Beom Tan, Amelia Li Min Croucher, Peter I Park, Kwon-Sik Rotival, Maxime Petretto, Enrico Bassett, JH Duncan Williams, Graham R Behmoaras, Jacques |
author_sort | Pereira, Marie |
collection | PubMed |
description | Functional characterisation of cell-type-specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption activities determine quantifiable skeletal traits. Here we took advantage of a trans-regulated gene network (MMnet, macrophage multinucleation network) which we found to be significantly enriched for GWAS variants associated with bone-related phenotypes. We found that the network hub gene Bcat1 and seven other co-regulated MMnet genes out of 13, regulate bone function. Specifically, global (Pik3cb(-/-), Atp8b2(+/-), Igsf8(-/-), Eml1(-/-), Appl2(-/-), Deptor(-/-)) and myeloid-specific Slc40a1 knockout mice displayed abnormal bone phenotypes. We report opposing effects of MMnet genes on bone mass in mice and osteoclast multinucleation/resorption in humans with strong correlation between the two. These results identify MMnet as a functionally conserved network that regulates osteoclast multinucleation and bone mass. |
format | Online Article Text |
id | pubmed-7351491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-73514912020-07-13 A trans-eQTL network regulates osteoclast multinucleation and bone mass Pereira, Marie Ko, Jeong-Hun Logan, John Protheroe, Hayley Kim, Kee-Beom Tan, Amelia Li Min Croucher, Peter I Park, Kwon-Sik Rotival, Maxime Petretto, Enrico Bassett, JH Duncan Williams, Graham R Behmoaras, Jacques eLife Cell Biology Functional characterisation of cell-type-specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption activities determine quantifiable skeletal traits. Here we took advantage of a trans-regulated gene network (MMnet, macrophage multinucleation network) which we found to be significantly enriched for GWAS variants associated with bone-related phenotypes. We found that the network hub gene Bcat1 and seven other co-regulated MMnet genes out of 13, regulate bone function. Specifically, global (Pik3cb(-/-), Atp8b2(+/-), Igsf8(-/-), Eml1(-/-), Appl2(-/-), Deptor(-/-)) and myeloid-specific Slc40a1 knockout mice displayed abnormal bone phenotypes. We report opposing effects of MMnet genes on bone mass in mice and osteoclast multinucleation/resorption in humans with strong correlation between the two. These results identify MMnet as a functionally conserved network that regulates osteoclast multinucleation and bone mass. eLife Sciences Publications, Ltd 2020-06-19 /pmc/articles/PMC7351491/ /pubmed/32553114 http://dx.doi.org/10.7554/eLife.55549 Text en © 2020, Pereira et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Pereira, Marie Ko, Jeong-Hun Logan, John Protheroe, Hayley Kim, Kee-Beom Tan, Amelia Li Min Croucher, Peter I Park, Kwon-Sik Rotival, Maxime Petretto, Enrico Bassett, JH Duncan Williams, Graham R Behmoaras, Jacques A trans-eQTL network regulates osteoclast multinucleation and bone mass |
title | A trans-eQTL network regulates osteoclast multinucleation and bone mass |
title_full | A trans-eQTL network regulates osteoclast multinucleation and bone mass |
title_fullStr | A trans-eQTL network regulates osteoclast multinucleation and bone mass |
title_full_unstemmed | A trans-eQTL network regulates osteoclast multinucleation and bone mass |
title_short | A trans-eQTL network regulates osteoclast multinucleation and bone mass |
title_sort | trans-eqtl network regulates osteoclast multinucleation and bone mass |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351491/ https://www.ncbi.nlm.nih.gov/pubmed/32553114 http://dx.doi.org/10.7554/eLife.55549 |
work_keys_str_mv | AT pereiramarie atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT kojeonghun atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT loganjohn atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT protheroehayley atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT kimkeebeom atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT tanamelialimin atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT croucherpeteri atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT parkkwonsik atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT rotivalmaxime atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT petrettoenrico atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT bassettjhduncan atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT williamsgrahamr atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT behmoarasjacques atranseqtlnetworkregulatesosteoclastmultinucleationandbonemass AT pereiramarie transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT kojeonghun transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT loganjohn transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT protheroehayley transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT kimkeebeom transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT tanamelialimin transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT croucherpeteri transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT parkkwonsik transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT rotivalmaxime transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT petrettoenrico transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT bassettjhduncan transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT williamsgrahamr transeqtlnetworkregulatesosteoclastmultinucleationandbonemass AT behmoarasjacques transeqtlnetworkregulatesosteoclastmultinucleationandbonemass |