Cargando…
Analysis of Breast Cancer Detection Using Different Machine Learning Techniques
Data mining algorithms play an important role in the prediction of early-stage breast cancer. In this paper, we propose an approach that improves the accuracy and enhances the performance of three different classifiers: Decision Tree (J48), Naïve Bayes (NB), and Sequential Minimal Optimization (SMO)...
Autores principales: | Mohammed, Siham A., Darrab, Sadeq, Noaman, Salah A., Saake, Gunter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351679/ http://dx.doi.org/10.1007/978-981-15-7205-0_10 |
Ejemplares similares
-
RPP Algorithm: A Method for Discovering Interesting Rare Itemsets
por: Darrab, Sadeq, et al.
Publicado: (2020) -
Robust and efficient COVID-19 detection techniques: A machine learning approach
por: Hasan, Md. Mahadi, et al.
Publicado: (2022) -
A Review of Machine Learning Techniques for the Classification and Detection of Breast Cancer from Medical Images
por: Jalloul, Reem, et al.
Publicado: (2023) -
Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques
por: Tharwat, Mai, et al.
Publicado: (2022) -
Predicting Breast Cancer Leveraging Supervised Machine Learning Techniques
por: Aamir, Sanam, et al.
Publicado: (2022)