Cargando…
Adaptive and Dynamic Knowledge Transfer in Multi-task Learning with Attention Networks
Multi-task learning has shown promising results in many applications of machine learning: given several related tasks, it aims to generalize better on the original tasks, by leveraging the knowledge among tasks. The knowledge transfer mainly depends on task relationships. Most of existing multi-task...
Autores principales: | Ma, Tao, Tan, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351683/ http://dx.doi.org/10.1007/978-981-15-7205-0_1 |
Ejemplares similares
-
Meta-Knowledge and Multi-Task Learning-Based Multi-Scene Adaptive Crowd Counting
por: Tang, Siqi, et al.
Publicado: (2022) -
Multi-Timescale Memory Dynamics Extend Task Repertoire in a Reinforcement Learning Network With Attention-Gated Memory
por: Martinolli, Marco, et al.
Publicado: (2018) -
Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer
por: van Dijk, Ludger, et al.
Publicado: (2016) -
Multi-Task Network Representation Learning
por: Xie, Yu, et al.
Publicado: (2020) -
Dynamic transfer learning with progressive meta-task scheduler
por: Wu, Jun, et al.
Publicado: (2022)