Cargando…
Research on PM(2.5) Integrated Prediction Model Based on Lasso-RF-GAM
PM(2.5) concentration is very difficult to predict, for it is the result of complex interactions among various factors. This paper combines the random forest-recursive feature elimination algorithm and lasso regression for joint feature selection, puts forward a PM(2.5) concentration prediction mode...
Autores principales: | Wu, Tingxian, Zhao, Ziru, Wei, Haoxiang, Peng, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351685/ http://dx.doi.org/10.1007/978-981-15-7205-0_8 |
Ejemplares similares
-
GAMS5
por: Doll, C., et al.
Publicado: (2000) -
PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework
por: Chen, Mei-Hsin, et al.
Publicado: (2023) -
Preliminary Results on the Search for l^+ l^- gam gam , \nu\bar\nu gam gam and q\barq gam gam Events in 1993
por: DELPHI Collaboration
Publicado: (2018) -
Measurement of the e^+e^--> gam gam(gam) Cross Section at the Z Energies
por: Checchia, P
Publicado: (2018) -
The gam gam resonance production at LEP DELPHI
por: Muryn, B
Publicado: (1994)