Cargando…
PCA Based Kernel Initialization for Convolutional Neural Networks
The initialization of Convolutional Neural Networks (CNNs) is about providing reasonable initial values for the convolution kernels and the fully connected layers. In this paper, we proposed a convolution kernel initialization method based on the two-dimensional principal component analysis (2DPCA),...
Autores principales: | Wang, Yifeng, Rong, Yuxi, Pan, Hongyue, Liu, Ke, Hu, Yang, Wu, Fangmin, Peng, Wei, Xue, Xingsi, Chen, Junfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351687/ http://dx.doi.org/10.1007/978-981-15-7205-0_7 |
Ejemplares similares
-
Improving RLRN Image Splicing Detection with the Use of PCA and Kernel PCA
por: Moghaddasi, Zahra, et al.
Publicado: (2014) -
Improvement of variables interpretability in kernel PCA
por: Briscik, Mitja, et al.
Publicado: (2023) -
Lung Cancer Detection Based on Kernel PCA-Convolution Neural Network Feature Extraction and Classification by Fast Deep Belief Neural Network in Disease Management Using Multimedia Data Sources
por: Jain, Deepak Kumar, et al.
Publicado: (2022) -
Kernel-PCA data integration with enhanced interpretability
por: Reverter, Ferran, et al.
Publicado: (2014) -
Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting
por: Khaki, Saeed, et al.
Publicado: (2020)