Cargando…
Generalizable deep temporal models for predicting episodes of sudden hypotension in critically ill patients: a personalized approach
The vast quantities of data generated and collected in the Intensive Care Unit (ICU) have given rise to large retrospective datasets that are frequently used for observational studies. The temporal nature and fine granularity of much of the data collected in the ICU enable the pursuit of predictive...
Autores principales: | Chan, Brandon, Chen, Brian, Sedghi, Alireza, Laird, Philip, Maslove, David, Mousavi, Parvin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351714/ https://www.ncbi.nlm.nih.gov/pubmed/32651401 http://dx.doi.org/10.1038/s41598-020-67952-0 |
Ejemplares similares
-
A deep learning model for the classification of atrial fibrillation in critically ill patients
por: Chen, Brian, et al.
Publicado: (2023) -
Quantifying deep neural network uncertainty for atrial fibrillation detection with limited labels
por: Chen, Brian, et al.
Publicado: (2022) -
Topology preserving stratification of tissue neoplasticity using Deep Neural Maps and microRNA signatures
por: Kaczmarek, Emily, et al.
Publicado: (2022) -
Predictors of dexmedetomidine-associated hypotension in critically ill patients
por: Gerlach, Anthony T., et al.
Publicado: (2016) -
A dual boundary classifier for predicting acute hypotensive episodes in critical care
por: Bhattacharya, Sakyajit, et al.
Publicado: (2018)