Cargando…
Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications
Significant prostate carcinoma (sPCa) classification based on MRI using radiomics or deep learning approaches has gained much interest, due to the potential application in assisting in clinical decision-making. Objective: To systematically review the literature (i) to determine which algorithms are...
Autores principales: | Castillo T., Jose M., Arif, Muhammad, Niessen, Wiro J., Schoots, Ivo G., Veenland, Jifke F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352160/ https://www.ncbi.nlm.nih.gov/pubmed/32560558 http://dx.doi.org/10.3390/cancers12061606 |
Ejemplares similares
-
Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics
por: Castillo T., Jose M., et al.
Publicado: (2021) -
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI
por: Arif, Muhammad, et al.
Publicado: (2020) -
A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade
por: Castillo T., Jose M., et al.
Publicado: (2021) -
Quantification of Heterogeneity as a Biomarker in Tumor Imaging: A Systematic Review
por: Alic, Lejla, et al.
Publicado: (2014) -
Can DCE-MRI Explain the Heterogeneity in Radiopeptide Uptake Imaged by SPECT in a Pancreatic Neuroendocrine Tumor Model?
por: Bol, Karin, et al.
Publicado: (2013)