Cargando…

Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates

An investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nuclei...

Descripción completa

Detalles Bibliográficos
Autores principales: Prilepskii, Artur Y., Kalnin, Arseniy Y., Fakhardo, Anna F., Anastasova, Elizaveta I., Nedorezova, Daria D., Antonov, Grigorii A., Vinogradov, Vladimir V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352639/
https://www.ncbi.nlm.nih.gov/pubmed/32471021
http://dx.doi.org/10.3390/nano10061018
_version_ 1783557685065547776
author Prilepskii, Artur Y.
Kalnin, Arseniy Y.
Fakhardo, Anna F.
Anastasova, Elizaveta I.
Nedorezova, Daria D.
Antonov, Grigorii A.
Vinogradov, Vladimir V.
author_facet Prilepskii, Artur Y.
Kalnin, Arseniy Y.
Fakhardo, Anna F.
Anastasova, Elizaveta I.
Nedorezova, Daria D.
Antonov, Grigorii A.
Vinogradov, Vladimir V.
author_sort Prilepskii, Artur Y.
collection PubMed
description An investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nucleic acid—magnetic nanoparticle» type constructs are being developed to carry out the highly efficient detection of pathogens, create express systems for genotyping and sequencing, and detect siRNA. However, the data available on the impact of nanoparticles on the behavior of siRNA are insufficient. In this work, using nanoparticles of two classical oxides of inorganic chemistry (magnetite (Fe(3)O(4)) and silica (SiO(2)) nanoparticles), and widely used gold nanoparticles, we show their effect on the rate of siRNA hybridization. It has been determined that magnetite nanoparticles with a positive charge on the surface increase the rate of siRNA hybridization, while negatively charged magnetite and silica nanoparticles, or positively charged gold nanoparticles, do not affect hybridization rates (HR).
format Online
Article
Text
id pubmed-7352639
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-73526392020-07-21 Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates Prilepskii, Artur Y. Kalnin, Arseniy Y. Fakhardo, Anna F. Anastasova, Elizaveta I. Nedorezova, Daria D. Antonov, Grigorii A. Vinogradov, Vladimir V. Nanomaterials (Basel) Article An investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nucleic acid—magnetic nanoparticle» type constructs are being developed to carry out the highly efficient detection of pathogens, create express systems for genotyping and sequencing, and detect siRNA. However, the data available on the impact of nanoparticles on the behavior of siRNA are insufficient. In this work, using nanoparticles of two classical oxides of inorganic chemistry (magnetite (Fe(3)O(4)) and silica (SiO(2)) nanoparticles), and widely used gold nanoparticles, we show their effect on the rate of siRNA hybridization. It has been determined that magnetite nanoparticles with a positive charge on the surface increase the rate of siRNA hybridization, while negatively charged magnetite and silica nanoparticles, or positively charged gold nanoparticles, do not affect hybridization rates (HR). MDPI 2020-05-27 /pmc/articles/PMC7352639/ /pubmed/32471021 http://dx.doi.org/10.3390/nano10061018 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Prilepskii, Artur Y.
Kalnin, Arseniy Y.
Fakhardo, Anna F.
Anastasova, Elizaveta I.
Nedorezova, Daria D.
Antonov, Grigorii A.
Vinogradov, Vladimir V.
Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates
title Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates
title_full Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates
title_fullStr Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates
title_full_unstemmed Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates
title_short Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates
title_sort cationic magnetite nanoparticles for increasing sirna hybridization rates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352639/
https://www.ncbi.nlm.nih.gov/pubmed/32471021
http://dx.doi.org/10.3390/nano10061018
work_keys_str_mv AT prilepskiiartury cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates
AT kalninarseniyy cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates
AT fakhardoannaf cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates
AT anastasovaelizavetai cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates
AT nedorezovadariad cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates
AT antonovgrigoriia cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates
AT vinogradovvladimirv cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates