Cargando…
Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates
An investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nuclei...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352639/ https://www.ncbi.nlm.nih.gov/pubmed/32471021 http://dx.doi.org/10.3390/nano10061018 |
_version_ | 1783557685065547776 |
---|---|
author | Prilepskii, Artur Y. Kalnin, Arseniy Y. Fakhardo, Anna F. Anastasova, Elizaveta I. Nedorezova, Daria D. Antonov, Grigorii A. Vinogradov, Vladimir V. |
author_facet | Prilepskii, Artur Y. Kalnin, Arseniy Y. Fakhardo, Anna F. Anastasova, Elizaveta I. Nedorezova, Daria D. Antonov, Grigorii A. Vinogradov, Vladimir V. |
author_sort | Prilepskii, Artur Y. |
collection | PubMed |
description | An investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nucleic acid—magnetic nanoparticle» type constructs are being developed to carry out the highly efficient detection of pathogens, create express systems for genotyping and sequencing, and detect siRNA. However, the data available on the impact of nanoparticles on the behavior of siRNA are insufficient. In this work, using nanoparticles of two classical oxides of inorganic chemistry (magnetite (Fe(3)O(4)) and silica (SiO(2)) nanoparticles), and widely used gold nanoparticles, we show their effect on the rate of siRNA hybridization. It has been determined that magnetite nanoparticles with a positive charge on the surface increase the rate of siRNA hybridization, while negatively charged magnetite and silica nanoparticles, or positively charged gold nanoparticles, do not affect hybridization rates (HR). |
format | Online Article Text |
id | pubmed-7352639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73526392020-07-21 Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates Prilepskii, Artur Y. Kalnin, Arseniy Y. Fakhardo, Anna F. Anastasova, Elizaveta I. Nedorezova, Daria D. Antonov, Grigorii A. Vinogradov, Vladimir V. Nanomaterials (Basel) Article An investigation of the interaction principles of nucleic acids and nanoparticles is a priority for the development of theoretical and methodological approaches to creating bionanocomposite structures, which determines the area and boundaries of biomedical use of developed nanoscale devices. «Nucleic acid—magnetic nanoparticle» type constructs are being developed to carry out the highly efficient detection of pathogens, create express systems for genotyping and sequencing, and detect siRNA. However, the data available on the impact of nanoparticles on the behavior of siRNA are insufficient. In this work, using nanoparticles of two classical oxides of inorganic chemistry (magnetite (Fe(3)O(4)) and silica (SiO(2)) nanoparticles), and widely used gold nanoparticles, we show their effect on the rate of siRNA hybridization. It has been determined that magnetite nanoparticles with a positive charge on the surface increase the rate of siRNA hybridization, while negatively charged magnetite and silica nanoparticles, or positively charged gold nanoparticles, do not affect hybridization rates (HR). MDPI 2020-05-27 /pmc/articles/PMC7352639/ /pubmed/32471021 http://dx.doi.org/10.3390/nano10061018 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Prilepskii, Artur Y. Kalnin, Arseniy Y. Fakhardo, Anna F. Anastasova, Elizaveta I. Nedorezova, Daria D. Antonov, Grigorii A. Vinogradov, Vladimir V. Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates |
title | Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates |
title_full | Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates |
title_fullStr | Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates |
title_full_unstemmed | Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates |
title_short | Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates |
title_sort | cationic magnetite nanoparticles for increasing sirna hybridization rates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352639/ https://www.ncbi.nlm.nih.gov/pubmed/32471021 http://dx.doi.org/10.3390/nano10061018 |
work_keys_str_mv | AT prilepskiiartury cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates AT kalninarseniyy cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates AT fakhardoannaf cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates AT anastasovaelizavetai cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates AT nedorezovadariad cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates AT antonovgrigoriia cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates AT vinogradovvladimirv cationicmagnetitenanoparticlesforincreasingsirnahybridizationrates |