Cargando…

A Novel Sulfonamide, 4-FS, Reduces Ethanol Drinking and Physical Withdrawal Associated With Ethanol Dependence

Carbonic anhydrase (CA) is abundant in glial cells in the brain and CA type II isoform (CA II) activity in the hippocampus plays an important role in buffering extracellular pH transients produced by neural activity. Chronic ethanol exposure results in respiratory and metabolic acidosis, producing s...

Descripción completa

Detalles Bibliográficos
Autores principales: Sona Khan, Muhammad, Trenet, Wulfran, Xing, Nancy, Sibley, Britta, Abbas, Muzaffar, al-Rashida, Mariya, Rauf, Khalid, Mandyam, Chitra D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352747/
https://www.ncbi.nlm.nih.gov/pubmed/32575871
http://dx.doi.org/10.3390/ijms21124411
Descripción
Sumario:Carbonic anhydrase (CA) is abundant in glial cells in the brain and CA type II isoform (CA II) activity in the hippocampus plays an important role in buffering extracellular pH transients produced by neural activity. Chronic ethanol exposure results in respiratory and metabolic acidosis, producing shifts in extracellular pH in the brain and body. These neurophysiological changes by ethanol are hypothesized to contribute to the continued drinking behavior and physical withdrawal behavior in subjects consuming ethanol chronically. We explored whether chronic ethanol self-administration (ethanol drinking, 10% v/v; ED) without or under the influence of chronic intermittent ethanol vapor (CIE-ED) experience alters the expression of CA II in the hippocampus. Postmortem hippocampal tissue analyses demonstrated that CA II levels were enhanced in the hilus region of the hippocampus in ED and CIE-ED rats. We used a novel molecule—4-fluoro-N-(4-sulfamoylphenyl) benzenesulfonamide (4-FS)—a selective CA II inhibitor, to determine whether CA II plays a role in ethanol self-administration in ED and CIE-ED rats and physical withdrawal behavior in CIE-ED rats. 4-FS (20 mg/kg, i.p.) reduced ethanol self-administration in ED rats and physical withdrawal behavior in CIE-ED rats. Postmortem hippocampal tissue analyses demonstrated that 4-FS reduced CA II expression in ED and CIE-ED rats to control levels. In parallel, 4-FS enhanced GABA(A) receptor expression, reduced ratio of glutamatergic GluN2A/2B receptors and enhanced the expression of Fos, a marker of neuronal activation in the ventral hippocampus in ED rats. These findings suggest that 4-FS enhanced GABAergic transmission and increased activity of neurons of inhibitory phenotypes. Taken together, these findings support the role of CA II in assisting with negative affective behaviors associated with moderate to severe alcohol use disorders (AUD) and that CA II inhibitors are a potential therapeutic target to reduce continued drinking and somatic withdrawal symptoms associated with moderate to severe AUD.