Cargando…
Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria
Adult stem cells represent a potential source for cellular therapy to treat serious human diseases. We characterized the insulin-producing cells from adult peripheral blood (designated PB-IPC), which displayed a unique phenotype. Mitochondria are normally located in the cellular cytoplasm, where the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352808/ https://www.ncbi.nlm.nih.gov/pubmed/32549211 http://dx.doi.org/10.3390/ijms21124249 |
_version_ | 1783557725028876288 |
---|---|
author | Yu, Haibo Hu, Wei Song, Xiang Descalzi-Montoya, Dante Yang, Zheng Korngold, Robert Zhao, Yong |
author_facet | Yu, Haibo Hu, Wei Song, Xiang Descalzi-Montoya, Dante Yang, Zheng Korngold, Robert Zhao, Yong |
author_sort | Yu, Haibo |
collection | PubMed |
description | Adult stem cells represent a potential source for cellular therapy to treat serious human diseases. We characterized the insulin-producing cells from adult peripheral blood (designated PB-IPC), which displayed a unique phenotype. Mitochondria are normally located in the cellular cytoplasm, where they generate ATP to power the cell’s functions. Ex vivo and in vivo functional studies established that treatment with platelet-derived mitochondria can reprogram the transformation of adult PB-IPC into functional CD34(+) hematopoietic stem cells (HSC)-like cells, leading to the production of blood cells such as T cells, B cells, monocytes/macrophages, granulocytes, red blood cells, and megakaryocytes (MKs)/platelets. These findings revealed a novel function of mitochondria in directly contributing to cellular reprogramming, thus overcoming the limitations and safety concerns of using conventional technologies to reprogram embryonic stem (ES) and induced pluripotent stem (iPS) cells in regenerative medicine. |
format | Online Article Text |
id | pubmed-7352808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73528082020-07-15 Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria Yu, Haibo Hu, Wei Song, Xiang Descalzi-Montoya, Dante Yang, Zheng Korngold, Robert Zhao, Yong Int J Mol Sci Article Adult stem cells represent a potential source for cellular therapy to treat serious human diseases. We characterized the insulin-producing cells from adult peripheral blood (designated PB-IPC), which displayed a unique phenotype. Mitochondria are normally located in the cellular cytoplasm, where they generate ATP to power the cell’s functions. Ex vivo and in vivo functional studies established that treatment with platelet-derived mitochondria can reprogram the transformation of adult PB-IPC into functional CD34(+) hematopoietic stem cells (HSC)-like cells, leading to the production of blood cells such as T cells, B cells, monocytes/macrophages, granulocytes, red blood cells, and megakaryocytes (MKs)/platelets. These findings revealed a novel function of mitochondria in directly contributing to cellular reprogramming, thus overcoming the limitations and safety concerns of using conventional technologies to reprogram embryonic stem (ES) and induced pluripotent stem (iPS) cells in regenerative medicine. MDPI 2020-06-15 /pmc/articles/PMC7352808/ /pubmed/32549211 http://dx.doi.org/10.3390/ijms21124249 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Haibo Hu, Wei Song, Xiang Descalzi-Montoya, Dante Yang, Zheng Korngold, Robert Zhao, Yong Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria |
title | Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria |
title_full | Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria |
title_fullStr | Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria |
title_full_unstemmed | Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria |
title_short | Generation of Hematopoietic-Like Stem Cells from Adult Human Peripheral Blood Following Treatment with Platelet-Derived Mitochondria |
title_sort | generation of hematopoietic-like stem cells from adult human peripheral blood following treatment with platelet-derived mitochondria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352808/ https://www.ncbi.nlm.nih.gov/pubmed/32549211 http://dx.doi.org/10.3390/ijms21124249 |
work_keys_str_mv | AT yuhaibo generationofhematopoieticlikestemcellsfromadulthumanperipheralbloodfollowingtreatmentwithplateletderivedmitochondria AT huwei generationofhematopoieticlikestemcellsfromadulthumanperipheralbloodfollowingtreatmentwithplateletderivedmitochondria AT songxiang generationofhematopoieticlikestemcellsfromadulthumanperipheralbloodfollowingtreatmentwithplateletderivedmitochondria AT descalzimontoyadante generationofhematopoieticlikestemcellsfromadulthumanperipheralbloodfollowingtreatmentwithplateletderivedmitochondria AT yangzheng generationofhematopoieticlikestemcellsfromadulthumanperipheralbloodfollowingtreatmentwithplateletderivedmitochondria AT korngoldrobert generationofhematopoieticlikestemcellsfromadulthumanperipheralbloodfollowingtreatmentwithplateletderivedmitochondria AT zhaoyong generationofhematopoieticlikestemcellsfromadulthumanperipheralbloodfollowingtreatmentwithplateletderivedmitochondria |