Cargando…
Improving Multi-Tumor Biomarker Health Check-Up Tests with Machine Learning Algorithms
Background: Tumor markers are used to screen tens of millions of individuals worldwide at annual health check-ups, especially in East Asia. Machine learning (ML)-based algorithms that improve the diagnostic accuracy and clinical utility of these tests can have substantial impact leading to the early...
Autores principales: | Wang, Hsin-Yao, Chen, Chun-Hsien, Shi, Steve, Chung, Chia-Ru, Wen, Ying-Hao, Wu, Min-Hsien, Lebowitz, Michael S., Zhou, Jiming, Lu, Jang-Jih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352838/ https://www.ncbi.nlm.nih.gov/pubmed/32492934 http://dx.doi.org/10.3390/cancers12061442 |
Ejemplares similares
-
Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study
por: Yu, Jia-Ruei, et al.
Publicado: (2022) -
Incorporating Statistical Test and Machine Intelligence Into Strain Typing of Staphylococcus haemolyticus Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry
por: Chung, Chia-Ru, et al.
Publicado: (2019) -
Development of a two-step nucleic acid amplification test for accurate diagnosis of the Mycobacterium tuberculosis complex
por: Lin, Chien-Ru, et al.
Publicado: (2021) -
Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer’s Disease
por: Chang, Chun-Hung, et al.
Publicado: (2021) -
To check in or to check up?
por: Aslam, Z.
Publicado: (2023)