Cargando…

OsJAZ13 Negatively Regulates Jasmonate Signaling and Activates Hypersensitive Cell Death Response in Rice

Jasmonate ZIM-domain (JAZ) proteins belong to the subgroup of TIFY family and act as key regulators of jasmonate (JA) responses in plants. To date, only a few JAZ proteins have been characterized in rice. Here, we report the identification and function of rice OsJAZ13 gene. The gene encodes three di...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Xiujing, Zhang, Lei, Wei, Xiaoli, Zhou, Yun, Dai, Yan, Zhu, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352843/
https://www.ncbi.nlm.nih.gov/pubmed/32575555
http://dx.doi.org/10.3390/ijms21124379
Descripción
Sumario:Jasmonate ZIM-domain (JAZ) proteins belong to the subgroup of TIFY family and act as key regulators of jasmonate (JA) responses in plants. To date, only a few JAZ proteins have been characterized in rice. Here, we report the identification and function of rice OsJAZ13 gene. The gene encodes three different splice variants: OsJAZ13a, OsJAZ13b, and OsJAZ13c. The expression of OsJAZ13 was mainly activated in vegetative tissues and transiently responded to JA and ethylene. Subcellular localization analysis indicated OsJAZ13a is a nuclear protein. Yeast two-hybrid assays revealed OsJAZ13a directly interacts with OsMYC2, and also with OsCOI1, in a COR-dependent manner. Furthermore, OsJAZ13a recruited a general co-repressor OsTPL via an adaptor protein OsNINJA. Remarkably, overexpression of OsJAZ13a resulted in the attenuation of root by methyl JA. Furthermore, OsJAZ13a-overexpressing plants developed lesion mimics in the sheath after approximately 30–45 days of growth. Tillers with necrosis died a few days later. Gene-expression analysis suggested the role of OsJAZ13 in modulating the expression of JA/ethylene response-related genes to regulate growth and activate hypersensitive cell death. Taken together, these observations describe a novel regulatory mechanism in rice and provide the basis for elucidating the function of OsJAZ13 in signal transduction and cell death in plants.