Cargando…
Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352944/ https://www.ncbi.nlm.nih.gov/pubmed/32575903 http://dx.doi.org/10.3390/cancers12061644 |
_version_ | 1783557759190433792 |
---|---|
author | Urman, Jesús M. Herranz, José M. Uriarte, Iker Rullán, María Oyón, Daniel González, Belén Fernandez-Urién, Ignacio Carrascosa, Juan Bolado, Federico Zabalza, Lucía Arechederra, María Alvarez-Sola, Gloria Colyn, Leticia Latasa, María U. Puchades-Carrasco, Leonor Pineda-Lucena, Antonio Iraburu, María J. Iruarrizaga-Lejarreta, Marta Alonso, Cristina Sangro, Bruno Purroy, Ana Gil, Isabel Carmona, Lorena Cubero, Francisco Javier Martínez-Chantar, María L. Banales, Jesús M. Romero, Marta R. Macias, Rocio I.R. Monte, Maria J. Marín, Jose J. G. Vila, Juan J. Corrales, Fernando J. Berasain, Carmen Fernández-Barrena, Maite G. Avila, Matías A. |
author_facet | Urman, Jesús M. Herranz, José M. Uriarte, Iker Rullán, María Oyón, Daniel González, Belén Fernandez-Urién, Ignacio Carrascosa, Juan Bolado, Federico Zabalza, Lucía Arechederra, María Alvarez-Sola, Gloria Colyn, Leticia Latasa, María U. Puchades-Carrasco, Leonor Pineda-Lucena, Antonio Iraburu, María J. Iruarrizaga-Lejarreta, Marta Alonso, Cristina Sangro, Bruno Purroy, Ana Gil, Isabel Carmona, Lorena Cubero, Francisco Javier Martínez-Chantar, María L. Banales, Jesús M. Romero, Marta R. Macias, Rocio I.R. Monte, Maria J. Marín, Jose J. G. Vila, Juan J. Corrales, Fernando J. Berasain, Carmen Fernández-Barrena, Maite G. Avila, Matías A. |
author_sort | Urman, Jesús M. |
collection | PubMed |
description | Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy ((1)H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy. |
format | Online Article Text |
id | pubmed-7352944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73529442020-07-15 Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach Urman, Jesús M. Herranz, José M. Uriarte, Iker Rullán, María Oyón, Daniel González, Belén Fernandez-Urién, Ignacio Carrascosa, Juan Bolado, Federico Zabalza, Lucía Arechederra, María Alvarez-Sola, Gloria Colyn, Leticia Latasa, María U. Puchades-Carrasco, Leonor Pineda-Lucena, Antonio Iraburu, María J. Iruarrizaga-Lejarreta, Marta Alonso, Cristina Sangro, Bruno Purroy, Ana Gil, Isabel Carmona, Lorena Cubero, Francisco Javier Martínez-Chantar, María L. Banales, Jesús M. Romero, Marta R. Macias, Rocio I.R. Monte, Maria J. Marín, Jose J. G. Vila, Juan J. Corrales, Fernando J. Berasain, Carmen Fernández-Barrena, Maite G. Avila, Matías A. Cancers (Basel) Article Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy ((1)H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy. MDPI 2020-06-21 /pmc/articles/PMC7352944/ /pubmed/32575903 http://dx.doi.org/10.3390/cancers12061644 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Urman, Jesús M. Herranz, José M. Uriarte, Iker Rullán, María Oyón, Daniel González, Belén Fernandez-Urién, Ignacio Carrascosa, Juan Bolado, Federico Zabalza, Lucía Arechederra, María Alvarez-Sola, Gloria Colyn, Leticia Latasa, María U. Puchades-Carrasco, Leonor Pineda-Lucena, Antonio Iraburu, María J. Iruarrizaga-Lejarreta, Marta Alonso, Cristina Sangro, Bruno Purroy, Ana Gil, Isabel Carmona, Lorena Cubero, Francisco Javier Martínez-Chantar, María L. Banales, Jesús M. Romero, Marta R. Macias, Rocio I.R. Monte, Maria J. Marín, Jose J. G. Vila, Juan J. Corrales, Fernando J. Berasain, Carmen Fernández-Barrena, Maite G. Avila, Matías A. Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach |
title | Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach |
title_full | Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach |
title_fullStr | Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach |
title_full_unstemmed | Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach |
title_short | Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach |
title_sort | pilot multi-omic analysis of human bile from benign and malignant biliary strictures: a machine-learning approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352944/ https://www.ncbi.nlm.nih.gov/pubmed/32575903 http://dx.doi.org/10.3390/cancers12061644 |
work_keys_str_mv | AT urmanjesusm pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT herranzjosem pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT uriarteiker pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT rullanmaria pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT oyondaniel pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT gonzalezbelen pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT fernandezurienignacio pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT carrascosajuan pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT boladofederico pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT zabalzalucia pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT arechederramaria pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT alvarezsolagloria pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT colynleticia pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT latasamariau pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT puchadescarrascoleonor pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT pinedalucenaantonio pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT iraburumariaj pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT iruarrizagalejarretamarta pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT alonsocristina pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT sangrobruno pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT purroyana pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT gilisabel pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT carmonalorena pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT cuberofranciscojavier pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT martinezchantarmarial pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT banalesjesusm pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT romeromartar pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT maciasrocioir pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT montemariaj pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT marinjosejg pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT vilajuanj pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT corralesfernandoj pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT berasaincarmen pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT fernandezbarrenamaiteg pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach AT avilamatiasa pilotmultiomicanalysisofhumanbilefrombenignandmalignantbiliarystricturesamachinelearningapproach |