Cargando…

Graphene Oxide-Polypyrrole Coating for Functional Ceramics

Ceramic substrates were metallized with a Ni-Mo-P electroless coating and further modified with a polypyrrole (PPy) coating by the electrodeposition method. The properties of the polypyrrole coating were studied with the addition of a graphene oxide (GO) nanomaterial prior to the electrodeposition a...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosas-Laverde, Nelly Ma., Pruna, Alina Iuliana, Busquets-Mataix, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353082/
https://www.ncbi.nlm.nih.gov/pubmed/32570822
http://dx.doi.org/10.3390/nano10061188
Descripción
Sumario:Ceramic substrates were metallized with a Ni-Mo-P electroless coating and further modified with a polypyrrole (PPy) coating by the electrodeposition method. The properties of the polypyrrole coating were studied with the addition of a graphene oxide (GO) nanomaterial prior to the electrodeposition and its reduction degree. Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, Raman spectroscopy and cyclic voltammetry were employed to characterize the properties of the coatings. The results indicated the successful synthesis of conductive electrodes by the proposed approach. The electrodeposition of PPy and its charge storage properties are improved by chemically reduced GO. The surface capacitive contribution to the total stored charge was found to be dominant and increased 2–3 fold with the reduction of GO. The chemically reduced GO-modified PPy exhibits the highest capacitance of 660 F g(−1) at 2 mV s(−1), and shows a good cyclability of 94% after 500 charge/discharge cycles. The enclosed results indicate the use of an NiMoP electroless coating, and modification with a carbon nanomaterial and conducting polymer is a viable approach for achieving functional ceramics.