Cargando…

Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing

An explosion in the production of substrates for surface enhanced Raman scattering (SERS) has occurred using novel designs of plasmonic nanostructures (e.g., nanoparticle self-assembly), new plasmonic materials such as bimetallic nanomaterials (e.g., Au/Ag) and hybrid nanomaterials (e.g., metal/semi...

Descripción completa

Detalles Bibliográficos
Autor principal: Barbillon, Grégory
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353120/
https://www.ncbi.nlm.nih.gov/pubmed/32575470
http://dx.doi.org/10.3390/nano10061200
Descripción
Sumario:An explosion in the production of substrates for surface enhanced Raman scattering (SERS) has occurred using novel designs of plasmonic nanostructures (e.g., nanoparticle self-assembly), new plasmonic materials such as bimetallic nanomaterials (e.g., Au/Ag) and hybrid nanomaterials (e.g., metal/semiconductor), and new non-plasmonic nanomaterials. The novel plasmonic nanomaterials can enable a better charge transfer or a better confinement of the electric field inducing a SERS enhancement by adjusting, for instance, the size, shape, spatial organization, nanoparticle self-assembly, and nature of nanomaterials. The new non-plasmonic nanomaterials can favor a better charge transfer caused by atom defects, thus inducing a SERS enhancement. In last two years (2019–2020), great insights in the fields of design of plasmonic nanosystems based on the nanoparticle self-assembly and new plasmonic and non-plasmonic nanomaterials were realized. This mini-review is focused on the nanoparticle self-assembly, bimetallic nanoparticles, nanomaterials based on metal-zinc oxide, and other nanomaterials based on metal oxides and metal oxide-metal for SERS sensing.