Cargando…
Robust classification of cell cycle phase and biological feature extraction by image-based deep learning
Across the cell cycle, the subcellular organization undergoes major spatiotemporal changes that could in principle contain biological features that could potentially represent cell cycle phase. We applied convolutional neural network-based classifiers to extract such putative features from the fluor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353138/ https://www.ncbi.nlm.nih.gov/pubmed/32320349 http://dx.doi.org/10.1091/mbc.E20-03-0187 |
_version_ | 1783557805668564992 |
---|---|
author | Nagao, Yukiko Sakamoto, Mika Chinen, Takumi Okada, Yasushi Takao, Daisuke |
author_facet | Nagao, Yukiko Sakamoto, Mika Chinen, Takumi Okada, Yasushi Takao, Daisuke |
author_sort | Nagao, Yukiko |
collection | PubMed |
description | Across the cell cycle, the subcellular organization undergoes major spatiotemporal changes that could in principle contain biological features that could potentially represent cell cycle phase. We applied convolutional neural network-based classifiers to extract such putative features from the fluorescence microscope images of cells stained for the nucleus, the Golgi apparatus, and the microtubule cytoskeleton. We demonstrate that cell images can be robustly classified according to G1/S and G2 cell cycle phases without the need for specific cell cycle markers. Grad-CAM analysis of the classification models enabled us to extract several pairs of quantitative parameters of specific subcellular features as good classifiers for the cell cycle phase. These results collectively demonstrate that machine learning-based image processing is useful to extract biological features underlying cellular phenomena of interest in an unbiased and data-driven manner. |
format | Online Article Text |
id | pubmed-7353138 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-73531382020-08-30 Robust classification of cell cycle phase and biological feature extraction by image-based deep learning Nagao, Yukiko Sakamoto, Mika Chinen, Takumi Okada, Yasushi Takao, Daisuke Mol Biol Cell Articles Across the cell cycle, the subcellular organization undergoes major spatiotemporal changes that could in principle contain biological features that could potentially represent cell cycle phase. We applied convolutional neural network-based classifiers to extract such putative features from the fluorescence microscope images of cells stained for the nucleus, the Golgi apparatus, and the microtubule cytoskeleton. We demonstrate that cell images can be robustly classified according to G1/S and G2 cell cycle phases without the need for specific cell cycle markers. Grad-CAM analysis of the classification models enabled us to extract several pairs of quantitative parameters of specific subcellular features as good classifiers for the cell cycle phase. These results collectively demonstrate that machine learning-based image processing is useful to extract biological features underlying cellular phenomena of interest in an unbiased and data-driven manner. The American Society for Cell Biology 2020-06-15 /pmc/articles/PMC7353138/ /pubmed/32320349 http://dx.doi.org/10.1091/mbc.E20-03-0187 Text en © 2020 Nagao et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. http://creativecommons.org/licenses/by-nc-sa/3.0 This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License. |
spellingShingle | Articles Nagao, Yukiko Sakamoto, Mika Chinen, Takumi Okada, Yasushi Takao, Daisuke Robust classification of cell cycle phase and biological feature extraction by image-based deep learning |
title | Robust classification of cell cycle phase and biological feature extraction by image-based deep learning |
title_full | Robust classification of cell cycle phase and biological feature extraction by image-based deep learning |
title_fullStr | Robust classification of cell cycle phase and biological feature extraction by image-based deep learning |
title_full_unstemmed | Robust classification of cell cycle phase and biological feature extraction by image-based deep learning |
title_short | Robust classification of cell cycle phase and biological feature extraction by image-based deep learning |
title_sort | robust classification of cell cycle phase and biological feature extraction by image-based deep learning |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353138/ https://www.ncbi.nlm.nih.gov/pubmed/32320349 http://dx.doi.org/10.1091/mbc.E20-03-0187 |
work_keys_str_mv | AT nagaoyukiko robustclassificationofcellcyclephaseandbiologicalfeatureextractionbyimagebaseddeeplearning AT sakamotomika robustclassificationofcellcyclephaseandbiologicalfeatureextractionbyimagebaseddeeplearning AT chinentakumi robustclassificationofcellcyclephaseandbiologicalfeatureextractionbyimagebaseddeeplearning AT okadayasushi robustclassificationofcellcyclephaseandbiologicalfeatureextractionbyimagebaseddeeplearning AT takaodaisuke robustclassificationofcellcyclephaseandbiologicalfeatureextractionbyimagebaseddeeplearning |