Cargando…

Intermittent Fasting and High-Intensity Exercise Elicit Sexual-Dimorphic and Tissue-Specific Adaptations in Diet-Induced Obese Mice

The molecular adaptations that underpin body composition changes and health benefits of intermittent fasting (IF) and high-intensity interval training (HIIT) are unclear. The present study investigated these adaptations within the hypothalamus, white adipose and skeletal muscle tissue following 12 w...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Robin A., Stathis, Christos G., Hayes, Alan, Cooke, Matthew B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353251/
https://www.ncbi.nlm.nih.gov/pubmed/32545529
http://dx.doi.org/10.3390/nu12061764
Descripción
Sumario:The molecular adaptations that underpin body composition changes and health benefits of intermittent fasting (IF) and high-intensity interval training (HIIT) are unclear. The present study investigated these adaptations within the hypothalamus, white adipose and skeletal muscle tissue following 12 weeks of IF and/or HIIT in diet-induced obese mice. Mice (C57BL/6, 8-week-old, males/females) were fed high-fat (59%) and sugar (30%) water (HF/S) for 12 weeks followed by an additional 12 weeks of HF/S plus either IF, HIIT, combination (IF+HIIT) or HF/S only control (CON). Tissues were harvested at 12 and 24 weeks and analysed for various molecular markers. Hypothalamic NPY expression was significantly lower following IF+HIIT compared to CON in females. In adipose tissue, leptin expression was significantly lower following IF and IF+HIIT compared to CON in males and females. Males demonstrated increased markers of fat oxidation (HADH, FABP4) following IF+HIIT, whereas females demonstrated reduced markers of adipocyte differentiation/storage (CIDEC and FOXO1) following IF and/or IF+HIIT. In muscle, SIRT1, UCP3, PGC1α, and AS160 expression was significantly lower following IF compared to CON in males and/or females. This investigation suggests that males and females undertaking IF and HIIT may prevent weight gain via different mechanisms within the same tissue.