Cargando…
Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films
Nanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353415/ https://www.ncbi.nlm.nih.gov/pubmed/32471124 http://dx.doi.org/10.3390/nano10061024 |
_version_ | 1783557870357315584 |
---|---|
author | Lloret, Fernando Sankaran, Kamatchi Jothiramalingam Millan-Barba, Josué Desta, Derese Rouzbahani, Rozita Pobedinskas, Paulius Gutierrez, Marina Boyen, Hans-Gerd Haenen, Ken |
author_facet | Lloret, Fernando Sankaran, Kamatchi Jothiramalingam Millan-Barba, Josué Desta, Derese Rouzbahani, Rozita Pobedinskas, Paulius Gutierrez, Marina Boyen, Hans-Gerd Haenen, Ken |
author_sort | Lloret, Fernando |
collection | PubMed |
description | Nanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced chemical vapor deposition. While the methane (CH(4)) and P concentrations are kept constant, the N(2) concentration is varied from 0.2% to 2% and supplemented by H(2). The composition of the gas mixture is tracked in situ by optical emission spectroscopy. Scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, and Raman spectroscopy are used to provide evidence of the changes in crystal morphology, surface roughness, microstructure, and crystalline quality of the different NCD samples. The FEE results display that the 2% N(2) concentration sample had the best FEE properties, viz. the lowest turn-on field value of 14.3 V/µm and the highest current value of 2.7 µA at an applied field of 73.0 V/µm. Conductive AFM studies reveal that the 2% N(2) concentration NCD sample showed more emission sites, both from the diamond grains and the grain boundaries surrounding them. While phosphorus doping increased the electrical conductivity of the diamond grains, the incorporation of N(2) during growth facilitated the formation of nano-graphitic grain boundary phases that provide conducting pathways for the electrons, thereby improving the FEE properties for the 2% N(2) concentrated NCD films. |
format | Online Article Text |
id | pubmed-7353415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73534152020-07-15 Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films Lloret, Fernando Sankaran, Kamatchi Jothiramalingam Millan-Barba, Josué Desta, Derese Rouzbahani, Rozita Pobedinskas, Paulius Gutierrez, Marina Boyen, Hans-Gerd Haenen, Ken Nanomaterials (Basel) Article Nanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced chemical vapor deposition. While the methane (CH(4)) and P concentrations are kept constant, the N(2) concentration is varied from 0.2% to 2% and supplemented by H(2). The composition of the gas mixture is tracked in situ by optical emission spectroscopy. Scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, and Raman spectroscopy are used to provide evidence of the changes in crystal morphology, surface roughness, microstructure, and crystalline quality of the different NCD samples. The FEE results display that the 2% N(2) concentration sample had the best FEE properties, viz. the lowest turn-on field value of 14.3 V/µm and the highest current value of 2.7 µA at an applied field of 73.0 V/µm. Conductive AFM studies reveal that the 2% N(2) concentration NCD sample showed more emission sites, both from the diamond grains and the grain boundaries surrounding them. While phosphorus doping increased the electrical conductivity of the diamond grains, the incorporation of N(2) during growth facilitated the formation of nano-graphitic grain boundary phases that provide conducting pathways for the electrons, thereby improving the FEE properties for the 2% N(2) concentrated NCD films. MDPI 2020-05-27 /pmc/articles/PMC7353415/ /pubmed/32471124 http://dx.doi.org/10.3390/nano10061024 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lloret, Fernando Sankaran, Kamatchi Jothiramalingam Millan-Barba, Josué Desta, Derese Rouzbahani, Rozita Pobedinskas, Paulius Gutierrez, Marina Boyen, Hans-Gerd Haenen, Ken Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films |
title | Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films |
title_full | Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films |
title_fullStr | Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films |
title_full_unstemmed | Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films |
title_short | Improved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Films |
title_sort | improved field electron emission properties of phosphorus and nitrogen co-doped nanocrystalline diamond films |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353415/ https://www.ncbi.nlm.nih.gov/pubmed/32471124 http://dx.doi.org/10.3390/nano10061024 |
work_keys_str_mv | AT lloretfernando improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT sankarankamatchijothiramalingam improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT millanbarbajosue improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT destaderese improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT rouzbahanirozita improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT pobedinskaspaulius improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT gutierrezmarina improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT boyenhansgerd improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms AT haenenken improvedfieldelectronemissionpropertiesofphosphorusandnitrogencodopednanocrystallinediamondfilms |