Cargando…

LncRNA HOTAIR-mediated MTHFR methylation inhibits 5-fluorouracil sensitivity in esophageal cancer cells

BACKGROUND: Esophageal cancer (EC) represents one of the most aggressive digestive neoplasms globally, with marked geographical variations in morbidity and mortality. Chemoprevention is a promising approach for cancer therapy, while acquired chemoresistance is a major obstacle impeding the success o...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shuyao, Zheng, Fuchun, Zhang, Liqun, Huang, Zuojun, Huang, Xiaoshan, Pan, Zhen, Chen, Shuang, Xu, Chenchen, Jiang, Yi, Gu, Shuyi, Zhao, Chengkuan, Zhang, Qiuzhen, Shi, Ganggang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353690/
https://www.ncbi.nlm.nih.gov/pubmed/32653028
http://dx.doi.org/10.1186/s13046-020-01610-1
Descripción
Sumario:BACKGROUND: Esophageal cancer (EC) represents one of the most aggressive digestive neoplasms globally, with marked geographical variations in morbidity and mortality. Chemoprevention is a promising approach for cancer therapy, while acquired chemoresistance is a major obstacle impeding the success of 5-fluorouracil (5-FU)-based chemotherapy in EC, with the mechanisms underlying resistance not well-understood. In the present study, we focus on exploring the role of long non-coding RNA (lncRNA) HOTAIR in EC progression and sensitivity of EC cells to 5-FU. METHODS: Paired cancerous and pre-cancerous tissues surgically resected from EC patients were collected in this study. Promoter methylation of the MTHFR was assessed by methylation-specific PCR. RIP and ChIP assays were adopted to examine the interaction of DNA methyltransferases (DNMTs) with lncRNA HOTAIR and MTHFR, respectively. EC cells resistant to 5-FU were induced by step-wise continuous increasing concentrations of 5-FU. The sensitivity of EC cells to 5-FU in vivo was evaluated in nude mice treated with xenografts of EC cells followed by injection with 5-FU (i.p.). RESULTS: We found reciprocal expression patterns of lncRNA HOTAIR and MTHFR in EC tissues and human EC cells. Interference with lncRNA HOTAIR enhanced 5-FU-induced apoptosis, exhibited anti-proliferative activity, and reduced promoter methylation of the MTHFR in EC cells. Besides, overexpression of MTHFR attenuated the acquired chemoresistance induced by overexpression of lncRNA HOTAIR in EC cells. At last, enhanced chemosensitivity was observed in vivo once nude mice xenografted with lncRNA HOTAIR-depleted EC cells. CONCLUSION: Together, our study proposes that pharmacologic targeting of lncRNA HOTAIR sensitizes EC cells to 5-FU-based chemotherapy by attenuating the promoter hypermethylation of the MTHFR in EC.