Cargando…
DISC: a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning
Dropouts distort gene expression and misclassify cell types in single-cell transcriptome. Although imputation may improve gene expression and downstream analysis to some degree, it also inevitably introduces false signals. We develop DISC, a novel deep learning network with semi-supervised learning...
Autores principales: | He, Yao, Yuan, Hao, Wu, Cheng, Xie, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353747/ https://www.ncbi.nlm.nih.gov/pubmed/32650816 http://dx.doi.org/10.1186/s13059-020-02083-3 |
Ejemplares similares
-
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
scTour: a deep learning architecture for robust inference and accurate prediction of cellular dynamics
por: Li, Qian
Publicado: (2023) -
scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
por: Dong, Jiayi, et al.
Publicado: (2022) -
Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images
por: Yu, Gang, et al.
Publicado: (2021) -
Fast and scalable inference of multi-sample cancer lineages
por: Popic, Victoria, et al.
Publicado: (2015)