Cargando…
Bioengineered carina reconstruction using In-Vivo Bioreactor technique in human: proof of concept study
BACKGROUNDS: Long-segment airway defect reconstruction, especially when carina is invaded, remains a challenge in clinical setting. Previous attempts at bioengineered carina reconstruction failed within 90 days due to delayed revascularization and recurrent infection. METHODS: To establish the feasi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354144/ https://www.ncbi.nlm.nih.gov/pubmed/32676332 http://dx.doi.org/10.21037/tlcr-20-534 |
Sumario: | BACKGROUNDS: Long-segment airway defect reconstruction, especially when carina is invaded, remains a challenge in clinical setting. Previous attempts at bioengineered carina reconstruction failed within 90 days due to delayed revascularization and recurrent infection. METHODS: To establish the feasibility of carina bioengineering use In-Vivo Bioreactor technique. Uncontrolled single-center cohort study including three patients with long-segment airway lesions invading carina. Radical resection of the lesions was performed using standard surgical techniques. After resection, In-Vivo Bioreactor airway reconstruction was performed using a nitinol stent wrapped in two layers of acellularized dermis matrix (ADM). Two Port-a-Cath catheters connected to two portable peristaltic pumps were inserted between the ADM layers. The implanted bioengineered airway was continuously perfused with an antibiotic solution via the pump system. Peripheral total nucleated cells (TNCs) were harvested and seeded into the airway substitute via a Port-a-Cath twice a week for 1 month. The patients were treated as a bioreactor for in situ regeneration of their own bioengineered airway substitute. RESULTS: Three patients were included in the study (mean age, 54.7 years). The first patient underwent 8 cm long trachea and carina reconstruction, the second patient 6 cm long trachea, carina and main bronchus reconstruction. The third patient right main bronchus and carina reconstruction. Major morbidity included gastric retention and pneumonia. All three patients survived till last follow-up and bronchoscopy follow-up showed well-vascularized regenerated tissue without leakage. CONCLUSIONS: In this uncontrolled study, In-Vivo Bioreactor technique demonstrated potential to be applied for long-segment trachea, carina and bronchi reconstruction. Further research is needed to assess efficacy and safety. |
---|