Cargando…
A New EDA with Dimension Reduction Technique for Large Scale Many-Objective Optimization
The performance of many-objective evolutionary algorithms deteriorates appreciably in solving large-scale many-objective optimization problems (MaOPs) which encompass more than hundreds variables. One of the known rationales is the curse of dimensionality. Estimation of distribution algorithms sampl...
Autores principales: | Shi, Mingli, Ma, Lianbo, Yang, Guangming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354802/ http://dx.doi.org/10.1007/978-3-030-53956-6_33 |
Ejemplares similares
-
Workshop Dimension Reduction of Large-Scale Systems
por: Benner, Peter, et al.
Publicado: (2005) -
Feature Selection Based on a Large-Scale Many-Objective Evolutionary Algorithm
por: Li, Yue, et al.
Publicado: (2021) -
Many-objective African vulture optimization algorithm: A novel approach for many-objective problems
por: Askr, Heba, et al.
Publicado: (2023) -
Which renewable energy consumption is more efficient by fuzzy EDAS method based on PESTLE dimensions?
por: Demirtas, Ozgur, et al.
Publicado: (2021) -
Aerobic Oxidative EDA
Catalysis: Synthesis of Tetrahydroquinolines
Using an Organocatalytic EDA Active Acceptor
por: Runemark, August, et al.
Publicado: (2022)