Cargando…

Colour Quantisation by Human Mental Search

Colour quantisation is a common image processing technique to reduce the number of distinct colours in an image which are then represented by a colour palette. The selection of appropriate entries in this palette is a challenging issue while the quality of the quantised image is directly related to...

Descripción completa

Detalles Bibliográficos
Autores principales: Mousavirad, Seyed Jalaleddin, Schaefer, Gerald, Fang, Hui, Liu, Xiyao, Korovin, Iakov
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354817/
http://dx.doi.org/10.1007/978-3-030-53956-6_12
Descripción
Sumario:Colour quantisation is a common image processing technique to reduce the number of distinct colours in an image which are then represented by a colour palette. The selection of appropriate entries in this palette is a challenging issue while the quality of the quantised image is directly related to the colour palette. In this paper, we propose a novel colour quantisation algorithm based on the human mental search (HMS) algorithm. HMS is a recent population-based metaheuristic algorithm with three main operators: mental search to explore the vicinity of candidate solutions based on Levy flight, grouping to determine a promising region based on a clustering algorithm, and movement towards the best strategy. The performance of our proposed algorithm is evaluated on a set of benchmark images and in comparison to four conventional algorithms and seven soft computing-based colour quantisation algorithms. The obtained experimental results convincingly show that our proposed algorithm is capable of outperforming these approaches.