Cargando…
MicroRNA-21-3p Engineered Umbilical Cord Stem Cell-Derived Exosomes Inhibit Tendon Adhesion
PURPOSE: As a common complication of tendon injury, tendon adhesion is an unresolved problem in clinical work. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos), one of the most promising new-generation cell-free therapeutic age...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354957/ https://www.ncbi.nlm.nih.gov/pubmed/32753931 http://dx.doi.org/10.2147/JIR.S254879 |
Sumario: | PURPOSE: As a common complication of tendon injury, tendon adhesion is an unresolved problem in clinical work. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos), one of the most promising new-generation cell-free therapeutic agents, can improve tendon adhesion and explore potential-related mechanisms. METHODS: The rat Achilles tendon injury adhesion model was constructed in vivo, and the localization of HUMSC-Exos was used to evaluate the tendon adhesion. Rat fibroblast cell lines were treated with transforming growth factor β1 (TGF-β1) and/or HUMSC-Exos in vitro, and cell proliferation, apoptosis and gene expression were measured. MicroRNA (miRNA) sequencing and quantitative PCR (qPCR) analysis confirmed differential miRNAs. A specific miRNA antagonist (antagomir-21a-5p) was used to transform HUMSC-Exos and obtain modified exosomes to verify its efficacy and related mechanism of action. RESULTS: In this study, we found HUMSC-Exos reduced rat fibroblast proliferation and inhibited the expression of fibrosis genes: collagen III (COL III) and α-smooth muscle actin (α-SMA) in vitro. In the rat tendon adhesion model, topical application of HUMSC-Exos contributed to relief of tendon adhesion. Specifically, the fibrosis and inflammation-related genes were simultaneously inhibited by HUMSC-Exos. Further, miRNA sequencing of HUMSCs and HUMSC-Exos showed that miR-21a-3p was expressed at low abundance in HUMSC-Exos. The antagonist targeting miR-21a-3p was recruited for treatment of HUMSCs, and harvested HUMSC-Exos, which expressed low levels of miR-21a-3p, and expanded the inhibition of tendon adhesion in subsequent in vitro experiments. CONCLUSION: Our results indicate that HUMSC-Exos may manipulate p65 activity by delivering low-abundance miR-21a-3p, ultimately inhibiting tendon adhesion. The findings may be promising for dealing with tendon adhesion. |
---|