Cargando…
Privacy-preserving construction of generalized linear mixed model for biomedical computation
MOTIVATION: The generalized linear mixed model (GLMM) is an extension of the generalized linear model (GLM) in which the linear predictor takes random effects into account. Given its power of precisely modeling the mixed effects from multiple sources of random variations, the method has been widely...
Autores principales: | Zhu, Rui, Jiang, Chao, Wang, Xiaofeng, Wang, Shuang, Zheng, Hao, Tang, Haixu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355231/ https://www.ncbi.nlm.nih.gov/pubmed/32657380 http://dx.doi.org/10.1093/bioinformatics/btaa478 |
Ejemplares similares
-
Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach
por: Zhou, Xinxin, et al.
Publicado: (2022) -
Privacy preserving identification of population stratification for collaborative genomic research
por: Dervishi, Leonard, et al.
Publicado: (2023) -
Privacy and Security in Multi-User Health Kiosks
por: TAKYI, HAROLD, et al.
Publicado: (2017) -
Haplotype-based membership inference from summary genomic data
por: Bu, Diyue, et al.
Publicado: (2021) -
A Telehealth Privacy and Security Self-Assessment Questionnaire for Telehealth Providers: Development and Validation
por: ZHOU, LEMING, et al.
Publicado: (2019)