Cargando…
Improved survival analysis by learning shared genomic information from pan-cancer data
MOTIVATION: Recent advances in deep learning have offered solutions to many biomedical tasks. However, there remains a challenge in applying deep learning to survival analysis using human cancer transcriptome data. As the number of genes, the input variables of survival model, is larger than the amo...
Autores principales: | Kim, Sunkyu, Kim, Keonwoo, Choe, Junseok, Lee, Inggeol, Kang, Jaewoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355236/ https://www.ncbi.nlm.nih.gov/pubmed/32657401 http://dx.doi.org/10.1093/bioinformatics/btaa462 |
Ejemplares similares
-
AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics
por: Sharifi-Noghabi, Hossein, et al.
Publicado: (2020) -
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
por: Trofimov, Assya, et al.
Publicado: (2020) -
Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery
por: Zhou, Mengshi, et al.
Publicado: (2020) -
Identifying diagnosis-specific genotype–phenotype associations via joint multitask sparse canonical correlation analysis and classification
por: Du, Lei, et al.
Publicado: (2020) -
MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model
por: Venkatesh, Gopalakrishnan, et al.
Publicado: (2020)