Cargando…
TinGa: fast and flexible trajectory inference with Growing Neural Gas
MOTIVATION: During the last decade, trajectory inference (TI) methods have emerged as a novel framework to model cell developmental dynamics, most notably in the area of single-cell transcriptomics. At present, more than 70 TI methods have been published, and recent benchmarks showed that even state...
Autores principales: | Todorov, Helena, Cannoodt, Robrecht, Saelens, Wouter, Saeys, Yvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355244/ https://www.ncbi.nlm.nih.gov/pubmed/32657409 http://dx.doi.org/10.1093/bioinformatics/btaa463 |
Ejemplares similares
-
A comprehensive evaluation of module detection methods for gene expression data
por: Saelens, Wouter, et al.
Publicado: (2018) -
Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells
por: Cannoodt, Robrecht, et al.
Publicado: (2021) -
MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function
por: Shen, Zeyang, et al.
Publicado: (2020) -
Terminus enables the discovery of data-driven, robust transcript groups from RNA-seq data
por: Sarkar, Hirak, et al.
Publicado: (2020) -
Unsupervised topological alignment for single-cell multi-omics integration
por: Cao, Kai, et al.
Publicado: (2020)