Cargando…
AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics
MOTIVATION: The goal of pharmacogenomics is to predict drug response in patients using their single- or multi-omics data. A major challenge is that clinical data (i.e. patients) with drug response outcome is very limited, creating a need for transfer learning to bridge the gap between large pre-clin...
Autores principales: | Sharifi-Noghabi, Hossein, Peng, Shuman, Zolotareva, Olga, Collins, Colin C, Ester, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355265/ https://www.ncbi.nlm.nih.gov/pubmed/32657371 http://dx.doi.org/10.1093/bioinformatics/btaa442 |
Ejemplares similares
-
MOLI: multi-omics late integration with deep neural networks for drug response prediction
por: Sharifi-Noghabi, Hossein, et al.
Publicado: (2019) -
Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6
por: Tezenas du Montcel, Sophie, et al.
Publicado: (2014) -
Expansion of the clinical phenotype associated with mutations in activity-dependent neuroprotective protein
por: Pescosolido, Matthew F, et al.
Publicado: (2014) -
Fixed airflow obstruction in asthma: a descriptive study of patient profiles and effect on treatment responses
por: Tashkin, Donald P., et al.
Publicado: (2014) -
A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia
por: Tsoi, Ho, et al.
Publicado: (2014)