Cargando…
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
MOTIVATION: Mining drug–disease association and related interactions are essential for developing in silico drug repurposing (DR) methods and understanding underlying biological mechanisms. Recently, large-scale biological databases are increasingly available for pharmaceutical research, allowing fo...
Autores principales: | Wang, Zichen, Zhou, Mu, Arnold, Corey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355266/ https://www.ncbi.nlm.nih.gov/pubmed/32657387 http://dx.doi.org/10.1093/bioinformatics/btaa437 |
Ejemplares similares
-
Graph transformation for enzymatic mechanisms
por: Andersen, Jakob L, et al.
Publicado: (2021) -
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023) -
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers
por: Wang, Shike, et al.
Publicado: (2021) -
DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response
por: Huang, Zhijian, et al.
Publicado: (2023) -
Disease gene prediction with privileged information and heteroscedastic dropout
por: Shu, Juan, et al.
Publicado: (2021)