Cargando…
A Bayesian framework for inter-cellular information sharing improves dscRNA-seq quantification
MOTIVATION: Droplet-based single-cell RNA-seq (dscRNA-seq) data are being generated at an unprecedented pace, and the accurate estimation of gene-level abundances for each cell is a crucial first step in most dscRNA-seq analyses. When pre-processing the raw dscRNA-seq data to generate a count matrix...
Autores principales: | Srivastava, Avi, Malik, Laraib, Sarkar, Hirak, Patro, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355277/ https://www.ncbi.nlm.nih.gov/pubmed/32657394 http://dx.doi.org/10.1093/bioinformatics/btaa450 |
Ejemplares similares
-
Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level
por: Sarkar, Hirak, et al.
Publicado: (2019) -
Alevin efficiently estimates accurate gene abundances from dscRNA-seq data
por: Srivastava, Avi, et al.
Publicado: (2019) -
Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
por: Yan, Zichao, et al.
Publicado: (2020) -
Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization
por: Krieger, Spencer, et al.
Publicado: (2020) -
BIRD: identifying cell doublets via biallelic expression from single cells
por: Wainer-Katsir, Kerem, et al.
Publicado: (2020)