Cargando…
Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation
MOTIVATION: Approximate Bayesian computation (ABC) is an increasingly popular method for likelihood-free parameter inference in systems biology and other fields of research, as it allows analyzing complex stochastic models. However, the introduced approximation error is often not clear. It has been...
Autores principales: | Schälte, Yannik, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355286/ https://www.ncbi.nlm.nih.gov/pubmed/32657404 http://dx.doi.org/10.1093/bioinformatics/btaa397 |
Ejemplares similares
-
Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation
por: Schälte, Yannik, et al.
Publicado: (2023) -
Demographic inference through approximate-Bayesian-computation skyline plots
por: Navascués, Miguel, et al.
Publicado: (2017) -
“Exact” and Approximate Methods for Bayesian Inference: Stochastic Volatility Case Study
por: Shapovalova, Yuliya
Publicado: (2021) -
Efficient parameterization of large-scale dynamic models based on relative measurements
por: Schmiester, Leonard, et al.
Publicado: (2019) -
Exact and computationally efficient Bayesian inference for generalized Markov modulated Poisson processes
por: Gonçalves, Flávio B., et al.
Publicado: (2022)