Cargando…
Deep multiple instance learning classifies subtissue locations in mass spectrometry images from tissue-level annotations
MOTIVATION: Mass spectrometry imaging (MSI) characterizes the molecular composition of tissues at spatial resolution, and has a strong potential for distinguishing tissue types, or disease states. This can be achieved by supervised classification, which takes as input MSI spectra, and assigns class...
Autores principales: | Guo, Dan, Föll, Melanie Christine, Volkmann, Veronika, Enderle-Ammour, Kathrin, Bronsert, Peter, Schilling, Oliver, Vitek, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355295/ https://www.ncbi.nlm.nih.gov/pubmed/32657378 http://dx.doi.org/10.1093/bioinformatics/btaa436 |
Ejemplares similares
-
Benchmarking gene ontology function predictions using negative annotations
por: Warwick Vesztrocy, Alex, et al.
Publicado: (2020) -
On the feasibility of deep learning applications using raw mass spectrometry data
por: Cadow, Joris, et al.
Publicado: (2021) -
MS2Planner: improved fragmentation spectra coverage in untargeted mass spectrometry by iterative optimized data acquisition
por: Zuo, Zeyuan, et al.
Publicado: (2021) -
Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions
por: Yan, Zichao, et al.
Publicado: (2020) -
Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization
por: Krieger, Spencer, et al.
Publicado: (2020)