Cargando…
Network-principled deep generative models for designing drug combinations as graph sets
MOTIVATION: Combination therapy has shown to improve therapeutic efficacy while reducing side effects. Importantly, it has become an indispensable strategy to overcome resistance in antibiotics, antimicrobials and anticancer drugs. Facing enormous chemical space and unclear design principles for sma...
Autores principales: | Karimi, Mostafa, Hasanzadeh, Arman, Shen, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355302/ https://www.ncbi.nlm.nih.gov/pubmed/32657357 http://dx.doi.org/10.1093/bioinformatics/btaa317 |
Ejemplares similares
-
Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery
por: Zhou, Mengshi, et al.
Publicado: (2020) -
MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model
por: Venkatesh, Gopalakrishnan, et al.
Publicado: (2020) -
Identifying diagnosis-specific genotype–phenotype associations via joint multitask sparse canonical correlation analysis and classification
por: Du, Lei, et al.
Publicado: (2020) -
Improved survival analysis by learning shared genomic information from pan-cancer data
por: Kim, Sunkyu, et al.
Publicado: (2020) -
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
por: Trofimov, Assya, et al.
Publicado: (2020)