Cargando…
Novel Estimation of Penumbra Zone Based on Infarct Growth Using Machine Learning Techniques in Acute Ischemic Stroke
While the penumbra zone is traditionally assessed based on perfusion–diffusion mismatch, it can be assessed based on machine learning (ML) prediction of infarct growth. The purpose of this work was to develop and validate an ML method for the prediction of infarct growth distribution and volume, in...
Autores principales: | Kim, Yoon-Chul, Kim, Hyung Jun, Chung, Jong-Won, Kim, In Gyeong, Seong, Min Jung, Kim, Keon Ha, Jeon, Pyoung, Nam, Hyo Suk, Seo, Woo-Keun, Kim, Gyeong-Moon, Bang, Oh Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355454/ https://www.ncbi.nlm.nih.gov/pubmed/32599812 http://dx.doi.org/10.3390/jcm9061977 |
Ejemplares similares
-
Significance of D-Dimer in Acute Ischemic Stroke Patients With Large Vessel Occlusion Accompanied by Active Cancer
por: Pan, Kwang Hyun, et al.
Publicado: (2022) -
Imaging of the Ischemic Penumbra in Acute Stroke
por: Lee, Deok Hee, et al.
Publicado: (2005) -
Characterization of clot composition in acute cerebral infarct using machine learning techniques
por: Chung, Jong‐Won, et al.
Publicado: (2019) -
TAB-TICI Score: Successful Recanalization Score After Endovascular Thrombectomy in Acute Stroke
por: Seo, Woo-Keun, et al.
Publicado: (2021) -
Endovascular Therapy for Acute Ischemic Stroke of Intracranial Atherosclerotic Origin—Neuroimaging Perspectives
por: Bang, Oh Young, et al.
Publicado: (2019)