Cargando…

Effect of Rumex Acetosa Extract, a Herbal Drug, on the Absorption of Fexofenadine

Herbal drugs are widely used for the auxiliary treatment of diseases. The pharmacokinetics of a drug may be altered when it is coadministered with herbal drugs that can affect drug absorption. The effects of herbal drugs on absorption must be evaluated. In this study, we investigated the effects of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahn, Jung Hwan, Kim, Junhyeong, Rehman, Naveed Ur, Kim, Hye-Jin, Ahn, Mi-Jeong, Chung, Hye Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355497/
https://www.ncbi.nlm.nih.gov/pubmed/32545588
http://dx.doi.org/10.3390/pharmaceutics12060547
Descripción
Sumario:Herbal drugs are widely used for the auxiliary treatment of diseases. The pharmacokinetics of a drug may be altered when it is coadministered with herbal drugs that can affect drug absorption. The effects of herbal drugs on absorption must be evaluated. In this study, we investigated the effects of Rumex acetosa (R. acetosa) extract on fexofenadine absorption. Fexofenadine was selected as a model drug that is a substrate of P-glycoprotein (P-gp) and organic anion transporting polypeptide 1A2 (OATP1A2). Emodine—the major component of R. acetosa extract—showed P-gp inhibition in vitro and in vivo. Uptake of fexofenadine via OATP1A2 was inhibited by R. acetosa extract in OATP1A2 transfected cells. A pharmacokinetic study showed that the area under the plasma concentration–time curve (AUC) of fexofenadine was smaller in the R. acetosa extract coadministered group than in the control group. R. acetosa extract also decreased aqueous solubility of fexofenadine HCl. The results of this study suggest that R. acetosa extract could inhibit the absorption of certain drugs via intervention in the aqueous solubility and the drug transporters. Therefore, R. acetosa extract may cause drug interactions when coadministered with substrates of drug transporters and poorly water-soluble drugs, although further clinical studies are needed.