Cargando…
Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks
Deep-learning workflows of microscopic image analysis are sufficient for handling the contextual variations because they employ biological samples and have numerous tasks. The use of well-defined annotated images is important for the workflow. Cancer stem cells (CSCs) are identified by specific cell...
Autores principales: | Aida, Saori, Okugawa, Junpei, Fujisaka, Serena, Kasai, Tomonari, Kameda, Hiroyuki, Sugiyama, Tomoyasu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355573/ https://www.ncbi.nlm.nih.gov/pubmed/32575396 http://dx.doi.org/10.3390/biom10060931 |
Ejemplares similares
-
Deep Learning of Phase-Contrast Images of Cancer Stem Cells Using a Selected Dataset of High Accuracy Value Using Conditional Generative Adversarial Networks
por: Zhang, Zaijun, et al.
Publicado: (2023) -
Temporal and Locational Values of Images Affecting the Deep Learning of Cancer Stem Cell Morphology
por: Hanai, Yumi, et al.
Publicado: (2022) -
Generative Adversarial Networks for Morphological–Temporal Classification of Stem Cell Images
por: Witmer, Adam, et al.
Publicado: (2021) -
Predicting Students’ Academic Performance with Conditional Generative Adversarial Network and Deep SVM
por: Sarwat, Samina, et al.
Publicado: (2022) -
Adversarial Patch Attacks on Deep-Learning-Based Face Recognition Systems Using Generative Adversarial Networks
por: Hwang, Ren-Hung, et al.
Publicado: (2023)