Cargando…

Impact of Different Phytohormones on Morphology, Yield and Cannabinoid Content of Cannabis sativa L.

The impact of exogenously applied plant growth regulators (PGR), 1-naphthalenaecetic acid (NAA), 6-benzylaminopurine (BAP), and a mixture of both (NAA/BAP-mix), was investigated in regard to plant height, length of axillary branches, number of internodes, biomass yield and cannabinoid content of thr...

Descripción completa

Detalles Bibliográficos
Autores principales: Burgel, Lisa, Hartung, Jens, Schibano, Daniele, Graeff-Hönninger, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355821/
https://www.ncbi.nlm.nih.gov/pubmed/32521804
http://dx.doi.org/10.3390/plants9060725
Descripción
Sumario:The impact of exogenously applied plant growth regulators (PGR), 1-naphthalenaecetic acid (NAA), 6-benzylaminopurine (BAP), and a mixture of both (NAA/BAP-mix), was investigated in regard to plant height, length of axillary branches, number of internodes, biomass yield and cannabinoid content of three different phytocannabinoid-rich (PCR) Cannabis genotypes. The results showed that total plant height was significantly reduced under the application of NAA (28%), BAP (18%), and NAA/BAP-mix treated plants (15%). Axillary branch length was also significantly reduced by 58% (NAA) and 30% (NAA/BAP-mix). BAP did not significantly reduce the length of axillary branches. The number of internodes was reduced by NAA (19%), BAP (10%), and the NAA/BAP-mix (14%) compared to the untreated control. NAA application influenced the plant architecture of the tested cv. KANADA beneficially, resulting in a more compact growth habitus, while inflorescence yield (23.51 g plant(−1)) remained similar compared to the control (24.31 g plant(−1)). Inflorescence yield of v. 0.2x and cv. FED was reduced due to PGR application while cannabinoid content remained stable. Overall, the application of PGR could be used on a genotype-specific level to beneficially influence plant architecture and optimize inflorescence yield per unit area and thus cannabinoid yield, especially in the presence of space limitations under indoor cultivation.