Cargando…
Hot Melt Coating of Amorphous Carvedilol
The use of amorphous drug delivery systems is an attractive approach to improve the bioavailability of low molecular weight drug candidates that suffer from poor aqueous solubility. However, the pharmaceutical performance of many neat amorphous drugs is compromised by their tendency for recrystalliz...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356097/ https://www.ncbi.nlm.nih.gov/pubmed/32517255 http://dx.doi.org/10.3390/pharmaceutics12060519 |
_version_ | 1783558421003370496 |
---|---|
author | Bannow, Jacob Koren, Lina Salar-Behzadi, Sharareh Löbmann, Korbinian Zimmer, Andreas Rades, Thomas |
author_facet | Bannow, Jacob Koren, Lina Salar-Behzadi, Sharareh Löbmann, Korbinian Zimmer, Andreas Rades, Thomas |
author_sort | Bannow, Jacob |
collection | PubMed |
description | The use of amorphous drug delivery systems is an attractive approach to improve the bioavailability of low molecular weight drug candidates that suffer from poor aqueous solubility. However, the pharmaceutical performance of many neat amorphous drugs is compromised by their tendency for recrystallization during storage and lumping upon dissolution, which may be improved by the application of coatings on amorphous surfaces. In this study, hot melt coating (HMC) as a solvent-free coating method was utilized to coat amorphous carvedilol (CRV) particles with tripalmitin containing 10% (w/w) and 20% (w/w) of polysorbate 65 (PS65) in a fluid bed coater. Lipid coated amorphous particles were assessed in terms of their physical stability during storage and their drug release during dynamic in vitro lipolysis. The release of CRV during in vitro lipolysis was shown to be mainly dependent on the PS65 concentration in the coating layer, with a PS65 concentration of 20% (w/w) resulting in an immediate release profile. The physical stability of the amorphous CRV core, however, was negatively affected by the lipid coating, resulting in the recrystallization of CRV at the interface between the crystalline lipid layer and the amorphous drug core. Our study demonstrated the feasibility of lipid spray coating of amorphous CRV as a strategy to modify the drug release from amorphous systems but at the same time highlights the importance of surface-mediated processes for the physical stability of the amorphous form. |
format | Online Article Text |
id | pubmed-7356097 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73560972020-07-31 Hot Melt Coating of Amorphous Carvedilol Bannow, Jacob Koren, Lina Salar-Behzadi, Sharareh Löbmann, Korbinian Zimmer, Andreas Rades, Thomas Pharmaceutics Article The use of amorphous drug delivery systems is an attractive approach to improve the bioavailability of low molecular weight drug candidates that suffer from poor aqueous solubility. However, the pharmaceutical performance of many neat amorphous drugs is compromised by their tendency for recrystallization during storage and lumping upon dissolution, which may be improved by the application of coatings on amorphous surfaces. In this study, hot melt coating (HMC) as a solvent-free coating method was utilized to coat amorphous carvedilol (CRV) particles with tripalmitin containing 10% (w/w) and 20% (w/w) of polysorbate 65 (PS65) in a fluid bed coater. Lipid coated amorphous particles were assessed in terms of their physical stability during storage and their drug release during dynamic in vitro lipolysis. The release of CRV during in vitro lipolysis was shown to be mainly dependent on the PS65 concentration in the coating layer, with a PS65 concentration of 20% (w/w) resulting in an immediate release profile. The physical stability of the amorphous CRV core, however, was negatively affected by the lipid coating, resulting in the recrystallization of CRV at the interface between the crystalline lipid layer and the amorphous drug core. Our study demonstrated the feasibility of lipid spray coating of amorphous CRV as a strategy to modify the drug release from amorphous systems but at the same time highlights the importance of surface-mediated processes for the physical stability of the amorphous form. MDPI 2020-06-06 /pmc/articles/PMC7356097/ /pubmed/32517255 http://dx.doi.org/10.3390/pharmaceutics12060519 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bannow, Jacob Koren, Lina Salar-Behzadi, Sharareh Löbmann, Korbinian Zimmer, Andreas Rades, Thomas Hot Melt Coating of Amorphous Carvedilol |
title | Hot Melt Coating of Amorphous Carvedilol |
title_full | Hot Melt Coating of Amorphous Carvedilol |
title_fullStr | Hot Melt Coating of Amorphous Carvedilol |
title_full_unstemmed | Hot Melt Coating of Amorphous Carvedilol |
title_short | Hot Melt Coating of Amorphous Carvedilol |
title_sort | hot melt coating of amorphous carvedilol |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356097/ https://www.ncbi.nlm.nih.gov/pubmed/32517255 http://dx.doi.org/10.3390/pharmaceutics12060519 |
work_keys_str_mv | AT bannowjacob hotmeltcoatingofamorphouscarvedilol AT korenlina hotmeltcoatingofamorphouscarvedilol AT salarbehzadisharareh hotmeltcoatingofamorphouscarvedilol AT lobmannkorbinian hotmeltcoatingofamorphouscarvedilol AT zimmerandreas hotmeltcoatingofamorphouscarvedilol AT radesthomas hotmeltcoatingofamorphouscarvedilol |