Cargando…
DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion
Background: SPECT (single-photon emission-computed tomography) is used for the detection of hypoperfusion in cognitive impairment and dementia but is not widely available and related to radiation dose exposure. We compared the performance of DSC (dynamic susceptibility contrast) perfusion using semi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356248/ https://www.ncbi.nlm.nih.gov/pubmed/32527014 http://dx.doi.org/10.3390/jcm9061800 |
_version_ | 1783558456718917632 |
---|---|
author | Schmidt, Manuel A. Engelhorn, Tobias Lang, Stefan Luecking, Hannes Hoelter, Philip Froehlich, Kilian Ritt, Philipp Maler, Juan Manuel Kuwert, Torsten Kornhuber, Johannes Doerfler, Arnd |
author_facet | Schmidt, Manuel A. Engelhorn, Tobias Lang, Stefan Luecking, Hannes Hoelter, Philip Froehlich, Kilian Ritt, Philipp Maler, Juan Manuel Kuwert, Torsten Kornhuber, Johannes Doerfler, Arnd |
author_sort | Schmidt, Manuel A. |
collection | PubMed |
description | Background: SPECT (single-photon emission-computed tomography) is used for the detection of hypoperfusion in cognitive impairment and dementia but is not widely available and related to radiation dose exposure. We compared the performance of DSC (dynamic susceptibility contrast) perfusion using semi- and fully adaptive deconvolution models to HMPAO-SPECT (99mTc-hexamethylpropyleneamine oxime-SPECT). Material and Methods: Twenty-seven patients with dementia of different subtypes including frontotemporal dementia (FTD) and mild cognitive impairment (MCI) received a multimodal diagnostic work-up including DSC perfusion at a clinical 3T high-field scanner and HMPAO-SPECT. Nineteen healthy control individuals received DSC perfusion. For calculation of the hemodynamic parameter maps, oscillation-index standard truncated singular value decomposition (oSVD, semi-adaptive) as well as Bayesian parameter estimation (BAY, fully adaptive) were performed. Results: Patients showed decreased cortical perfusion in the left frontal lobe compared to controls (relative cerebral blood volume corrected, rBVc: 0.37 vs. 0.27, p = 0.048, adjusted for age and sex). Performance of rBVc (corrected for T1 effects) was highest compared to SPECT for detection of frontal hypoperfusion (sensitivity 83%, specificity 80% for oSVD and BAY, area under curve (AUC) = 0.833 respectively, p < 0.05) in FTD and MCI. For nonleakage-corrected rBV and for rBF (relative cerebral blood flow), sensitivity of frontal hypoperfusion was above 80% for oSVD and for BAY (rBV: sensitivity 83%, specificity 75%, AUC = 0.908 for oSVD and 0.917 for BAY, p < 0.05 respectively; rBF: sensitivity 83%, specificity 65%, AUC = 0.825, p < 0.05 for oSVD). Conclusion: Advanced deconvolution DSC can reliably detect pathological perfusion alterations in FTD and MCI. Hence, this widely accessible technique has the potential to improve the diagnosis of dementia and MCI as part of an interdisciplinary multimodal imaging work-up. Advances in knowledge: Advanced DSC perfusion has a high potential in the work-up of suspected dementia and correlates with SPECT brain perfusion results in dementia and MCI. |
format | Online Article Text |
id | pubmed-7356248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73562482020-07-31 DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion Schmidt, Manuel A. Engelhorn, Tobias Lang, Stefan Luecking, Hannes Hoelter, Philip Froehlich, Kilian Ritt, Philipp Maler, Juan Manuel Kuwert, Torsten Kornhuber, Johannes Doerfler, Arnd J Clin Med Article Background: SPECT (single-photon emission-computed tomography) is used for the detection of hypoperfusion in cognitive impairment and dementia but is not widely available and related to radiation dose exposure. We compared the performance of DSC (dynamic susceptibility contrast) perfusion using semi- and fully adaptive deconvolution models to HMPAO-SPECT (99mTc-hexamethylpropyleneamine oxime-SPECT). Material and Methods: Twenty-seven patients with dementia of different subtypes including frontotemporal dementia (FTD) and mild cognitive impairment (MCI) received a multimodal diagnostic work-up including DSC perfusion at a clinical 3T high-field scanner and HMPAO-SPECT. Nineteen healthy control individuals received DSC perfusion. For calculation of the hemodynamic parameter maps, oscillation-index standard truncated singular value decomposition (oSVD, semi-adaptive) as well as Bayesian parameter estimation (BAY, fully adaptive) were performed. Results: Patients showed decreased cortical perfusion in the left frontal lobe compared to controls (relative cerebral blood volume corrected, rBVc: 0.37 vs. 0.27, p = 0.048, adjusted for age and sex). Performance of rBVc (corrected for T1 effects) was highest compared to SPECT for detection of frontal hypoperfusion (sensitivity 83%, specificity 80% for oSVD and BAY, area under curve (AUC) = 0.833 respectively, p < 0.05) in FTD and MCI. For nonleakage-corrected rBV and for rBF (relative cerebral blood flow), sensitivity of frontal hypoperfusion was above 80% for oSVD and for BAY (rBV: sensitivity 83%, specificity 75%, AUC = 0.908 for oSVD and 0.917 for BAY, p < 0.05 respectively; rBF: sensitivity 83%, specificity 65%, AUC = 0.825, p < 0.05 for oSVD). Conclusion: Advanced deconvolution DSC can reliably detect pathological perfusion alterations in FTD and MCI. Hence, this widely accessible technique has the potential to improve the diagnosis of dementia and MCI as part of an interdisciplinary multimodal imaging work-up. Advances in knowledge: Advanced DSC perfusion has a high potential in the work-up of suspected dementia and correlates with SPECT brain perfusion results in dementia and MCI. MDPI 2020-06-09 /pmc/articles/PMC7356248/ /pubmed/32527014 http://dx.doi.org/10.3390/jcm9061800 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schmidt, Manuel A. Engelhorn, Tobias Lang, Stefan Luecking, Hannes Hoelter, Philip Froehlich, Kilian Ritt, Philipp Maler, Juan Manuel Kuwert, Torsten Kornhuber, Johannes Doerfler, Arnd DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion |
title | DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion |
title_full | DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion |
title_fullStr | DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion |
title_full_unstemmed | DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion |
title_short | DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up of Dementia and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Brain Perfusion |
title_sort | dsc brain perfusion using advanced deconvolution models in the diagnostic work-up of dementia and mild cognitive impairment: a semiquantitative comparison with hmpao-spect-brain perfusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356248/ https://www.ncbi.nlm.nih.gov/pubmed/32527014 http://dx.doi.org/10.3390/jcm9061800 |
work_keys_str_mv | AT schmidtmanuela dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT engelhorntobias dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT langstefan dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT lueckinghannes dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT hoelterphilip dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT froehlichkilian dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT rittphilipp dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT malerjuanmanuel dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT kuwerttorsten dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT kornhuberjohannes dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion AT doerflerarnd dscbrainperfusionusingadvanceddeconvolutionmodelsinthediagnosticworkupofdementiaandmildcognitiveimpairmentasemiquantitativecomparisonwithhmpaospectbrainperfusion |