Cargando…
Development of Biodegradable Agar-Agar/Gelatin-Based Superabsorbent Hydrogel as an Efficient Moisture-Retaining Agent
Downgrading in the yield of crop is due to the inadequate availability of water. The way out for this trouble is to construct synthetic resources dependent on natural polymers with great water absorption and preservation limits. The present study investigated the design of agar-agar (Agr) and gelati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356264/ https://www.ncbi.nlm.nih.gov/pubmed/32580432 http://dx.doi.org/10.3390/biom10060939 |
Sumario: | Downgrading in the yield of crop is due to the inadequate availability of water. The way out for this trouble is to construct synthetic resources dependent on natural polymers with great water absorption and preservation limits. The present study investigated the design of agar-agar (Agr) and gelatin (GE) copolymerized methyl acrylate (MA) and acrylic acid (AA) hydrogel (Agr/GE-co-MA/AA) as a soil conditioner for moisture maintenance in agriculture. Agr/GE-co-MA/AA hydrogel was prepared by utilizing microwave-assisted green synthesis following the most suitable reaction conditions to obtain a remarkable water swelling percentage. The fabricated Agr/GE-co-MA/AA hydrogel was investigated through field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The water holding capacity of the soil and sand was examined by mixing Agr/GE-co-MA/AA hydrogel with soil and sand. The result demonstrates that the water holding time extended from 10 to 30 days for soil and 6 to 10 days for sand by using Agr/GE-co-MA/AA hydrogel. This synthesized biodegradable, low-cost and non-toxic Agr/GE-co-MA/AA hydrogel shows novelty as soil water maintaining material for irrigation in agriculture. |
---|