Cargando…
Cigarette Smoking during Pregnancy: Effects on Antioxidant Enzymes, Metallothionein and Trace Elements in Mother-Newborn Pairs
The effect of maternal smoking as a source of exposure to toxic metals Cd and Pb on superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, metallothionein (MT), Cd, Pb, Cu, Fe, Mn, Se and Zn concentrations were assessed in maternal and umbilical cord blood and placenta in 74 healthy m...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356311/ https://www.ncbi.nlm.nih.gov/pubmed/32532134 http://dx.doi.org/10.3390/biom10060892 |
Sumario: | The effect of maternal smoking as a source of exposure to toxic metals Cd and Pb on superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, metallothionein (MT), Cd, Pb, Cu, Fe, Mn, Se and Zn concentrations were assessed in maternal and umbilical cord blood and placenta in 74 healthy mother-newborn pairs after term delivery. Sparse discriminant analysis (SDA) was used to identify elements with the strongest impact on the SOD, GPx and MT in the measured compartments, which was then quantified by multiple regression analysis. SOD activity was lower in maternal and cord plasma, and higher in the placenta of smokers compared to non-smokers, whereas GPx activity and MT concentration did not differ between the groups. Although active smoking during pregnancy contributed to higher maternal Cd and Pb concentrations, its contribution to the variability of SOD, GPx or MT after control for other elements identified by SDA was not significant. However, an impaired balance in the antioxidant defence observed in the conditions of relatively low-to-moderate exposure levels to Cd and Pb could contribute to an increased susceptibility of offspring to oxidative stress and risk of disease development later in life. Further study on a larger number of subjects will help to better understand complex interactions between exposure to toxic elements and oxidative stress related to maternal cigarette smoking. |
---|